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Abstract. Virtual interventions enable the physics-based simulation of
device deployment within coronary arteries. This framework allows for
counterfactual reasoning by deploying the same device in different ar-
terial anatomies. However, current methods to create such counterfac-
tual arteries face a trade-off between controllability and realism. In this
study, we investigate how Latent Diffusion Models (LDMs) can custom
synthesize coronary anatomy for virtual intervention studies based on
mid-level anatomic constraints such as topological validity, local mor-
phological shape, and global skeletal structure. We also extend diffusion
model guidance strategies to the context of morpho-skeletal condition-
ing and propose a novel guidance method for continuous attributes that
adaptively updates the negative guiding condition throughout sampling.
Our framework enables the generation and editing of coronary anatomy
in a controllable manner, allowing device designers to derive mechanistic
insights regarding anatomic variation and simulated device deployment.

Keywords: Diffusion Models · Diffusion Guidance · Morphological Con-
straints · Anatomic Generation · Virtual Interventions · Digital Twins

1 Introduction

Coronary artery disease is caused by the buildup of diseased tissue in the arteries
that supply blood to the heart [32]. Variation in both local and global anatomic
structure influence the success of cardiological interventions, such as stent de-
ployment or balloon angioplasty [15, 22, 34]. Local structure is characterized by
the morphological attributes of each 3D component within the artery wall, such
as size or shape [23,26], while global structure is defined by the tree-like skeleton
that results from the artery bifurcating into one or several branches.
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Coronary
Morpho-Skeleton Virtual InterventionsSynthetic Arteries
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Fig. 1: We propose to control the generation of 3D multi-component diseased coronary
arteries with mid-level representations such as cross-sectional morphology and tree-
like skeletal structure. Synthetic arteries enable physics-based counterfactual reasoning
through comparative virtual intervention studies. We synthesize semantic segmentation
maps composed of luminal (blue), arterial wall (yellow) and calcified (green) tissues.

Virtual intervention platforms aim to disentangle the complex relationship
between coronary anatomy, biophysics, and pathophysiology [9, 39], enabling
physics-based simulations of medical interventions such as stent and balloon ex-
pansion [18,19,29]. However, current simulation-based platforms face a trade-off
between using anatomies that are either realistic or controllable. Using simplified
parametric geometry [8] such as tubular cylinders to represent coronary arter-
ies can isolate the effect of certain morphological features on device outcomes.
However, this approach cannot capture the intricate 3D micro-morphology of
coronary lesions [23,42], limiting the development of clinically relevant insights.
On the other hand, reconstructing digital twins from medical images produces re-
alistic anatomy but prevents control over anatomic attributes [9,17,45]. As such,
digital twins are unable to assess causal relationships between anatomic features
and device effectiveness, as many of these features are correlated together.

To address such limitations, we study how Latent Diffusion Models (LDMs)
can be used as a controllable data source for comparative virtual intervention
studies, producing customized anatomic counterfactuals that change the sim-
ulated outcome of device deployment. This would allow device designers to
understand which subtle anatomic features influence interventional outcomes,
guiding both the design process and clinical trial recruitment. We present three
methodological adaptations that enable LDMs to synthesize and edit 3D multi-
component coronary segmentation maps according to prespecified anatomic con-
straints. First, we study how to regularize LDM latent space to reduce the pres-
ence of topological defects (Sec. 3.2). Second, we enable conditional generation
based on clinically interpretable and editable representations of morphology and
skeletal structure (Sec. 3.3). The local morphological component is specified by
one or several cross-sectional features along the length of the artery, while the
global skeletal component specifies the presence, location, and shape of vessel bi-
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furcations. Lastly, we extend current diffusion guidance strategies with morpho-
skeletal regressor functions to enhance conditional fidelity (Sec. 3.4). In addition,
we introduce a novel guidance algorithm tailored to morphological conditioning
which utilizes lightweight and non-differentiable morphological regressor func-
tions to adaptively update the null condition during sampling (Sec. 3.4). Our
main contributions are thus as follows:
1. We introduce a method to improve the topological quality of 3D multi-

component coronary anatomies produced by latent diffusion models through
the use of a topological interaction loss during autoencoder training.

2. We develop a novel morpho-skeletal conditioning framework for latent diffu-
sion models to enable the controlled synthesis of coronary arteries and extend
loss-based guidance strategies to this task through the use of differentiable
morpho-skeletal regressor functions.

3. We demonstrate the limitations of classifier-free guidance for morpho-skeletal
generation and introduce an adaptive null guidance strategy. Our proposed
method operates through the use of non-differentiable morphological regres-
sors to determine the null guidance condition, enhancing conditional fidelity
and computational efficiency.

4. We show that our framework can disentangle micro-morphology and arterial
branch structure, condition on a variety of morphological features, and edit
patient-specific coronary arteries for comparative simulation studies.

2 Related Work

2.1 Generative Models of Virtual Anatomies

Current generative models of coronary arteries are based on parametric ap-
proaches, utilizing geometric primitives such as cylinders to approximate coro-
nary geometry [8, 21]. While such models enable geometric control, they do not
capture the complex morphological or topological variation associated with coro-
nary lesions. For simple topological organs such as the aorta, deep learning has
been used to produce virtual anatomy by deforming a 3D template shape [1,2,10].
Template-based approaches have also been used for generative editing by apply-
ing localized elastic deformations to template shapes, inducing common vascular
phenomena such as aneurysms and stenoses [27,28]. However, template-based ap-
proaches require anatomic correspondence and consistent topology between pa-
tients, which is not possible for multi-material coronary arteries. Alternatively,
implicit representations [30, 31, 41, 44], enable flexible generation of topological
structures but do not account for unphysiological topological defects. In contrast,
we aim to generate implicit representations of coronary anatomy to enable flex-
ible topological generation while selectively enforcing topological quality with
topological losses.

2.2 Diffusion Model Guidance

Diffusion model guidance techniques primarily fall into two families. Loss-based
methods include Classifier Guidance (CG) [7], which uses the gradient obtained
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from pre-trained classifiers to influence the sampling process. Loss-based tech-
niques have also been extended to solve inverse problems, in which the correcting
gradient is derived from a loss that measures the degree to which a constraint
is satisfied [4,13,38]. However, loss-based methods have not been studied in the
context of anatomic constraints and require computationally expensive back-
propagation. In contrast, null-conditioning based methods such as Classifier-Free
Guidance (CFG) [14] use a weighted combination of conditional and uncondi-
tional model outputs to guide the sampling process. Null conditions can also
be defined in a negative manner, guiding the sampling process away from cer-
tain conditions [11]. While effective for a variety of modalities [14, 25, 43], the
use of null-guidance for enforcing morphological or skeletal constraints has not
been explored. In this study, we adapt diffusion guidance strategies to the task
of enforcing morpho-skeletal constraints and develop novel guidance algorithms
suited to conditioning with continuous morphological features.

2.3 Topological regularization for Neural Networks
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Fig. 2: We regularize the latent space z
with a topological interaction loss applied
to the calcium and lumen segmentations.

Cardiovascular anatomy exhibits a
wide variety of topological struc-
tures, manifesting as connected com-
ponents, loops, and voids. It also fea-
tures multi-tissue interactions such as
containment and adjacency. Various
techniques have been developed to
constrain neural network outputs in
accordance with prespecified topolog-
ical priors. Persistent homology (PH)
losses [3, 5] can regularize multiclass
segmentation networks, where the in-
dividual classes and interactions be-
tween different classes should adhere
to specified topological priors. How-
ever, such PH-based methods are pro-
hibitively expensive to use with 3D
data, especially as the number of topological interactions increase. Alternative
techniques reduce topological interactions by penalizing critical voxels that vio-
late topological priors [12]. We study the application of such strategies to diffu-
sion models of anatomy, to which topological regularization has not been applied.

3 Methodology

3.1 Latent Diffusion Model

We employ a latent diffusion model (LDM), which is trained in the latent space
of a variational autoencoder (VAE). The training process for the VAE is shown in
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Fig. 2 in which an encoder ELDM encodes the multi-tissue coronary segmentation
maps x ∈ RC×H×W×D into a latent representation z ∈ Rc×h×w×d, where the
latent dimensions are downsampled by a factor f = H/h = W/w = D/d. Here,
C is the number of tissue classes and c is the number of latent channels. The
latents are then passed to the decoder DLDM back into voxel space, where a Dice
cross entropy reconstruction loss LR, KL divergence loss LKL, and a topological
interaction loss LT (Sec. 3.2) are applied. For our application, we aim to sample
from the conditional probability distribution of encoded coronary segmentation
maps pdata(z|y), where y represents mid-level anatomic constraints regarding
morphology ym and skeletal structure ys (Sec. 3.3). To train a diffusion model,
we consider the joint distribution p(zσ|y;σ) obtained through a forward diffusion
process, in which i.i.d Gaussian noise of standard deviation σ is added to the
data, where at σ = σmax the data is indistinguishable from Gaussian noise.
Equivalently, the forward process can be described by the stochastic equation
dzσ =

√
2σdw where w is the standard Wiener process. The reverse diffusion

process is defined as the solution to the following stochastic differential equation

dzσ = −2σ∇zσ
log p(zσ|y;σ) dt+

√
2σdw, (1)

Where ∇zσ log p(zσ|y;σ) represents the score function that is conditioned on y.
To train the network, we apply the forward diffusion process to produce inter-
mediately noised latents zσ = z + n where n ∼ N (0, σ2I), parameterized by a
noise level σ. The diffusion model is parameterized as a function Fθ, encapsu-
lated within a denoiser Dθ, that takes the intermediately noised input zσ, the
conditioning signal y, and the noise level σ to predict the clean data z.

Dθ(zσ;σ,y) = cskip(σ) zσ + cout(σ)Fθ(cin(σ) zσ; cnoise(σ),y) , (2)

where cskip allows Fθ to predict the noise n at low σ and the training data z at
high σ. The variables cout and cin scale the input and output magnitudes to be
within unit variance, and the constant cnoise maps the noise level σ to a condition-
ing input for the network [20]. The denoiser output is related to the conditional
score function through the relation ∇zσ

log p(zσ|y;σ) = (Dθ(zσ;σ,y)− z) /σ2

and Fθ is chosen to be a 3D U-net (see Appendix E). The denoising loss LD
is then specified based on the agreement between the denoiser output and the
original training data:

LD = Eσ,z,n[λ(σ)||Dθ(zσ;σ,y) − z||22] , (3)

such that the loss weighting λ(σ) = 1/cout(σ)
2 ensures an effective loss weight

that is uniform across all noise levels, and σ is sampled from a log-normal dis-
tribution.

3.2 Topological Regularization

To be compatible for numerical simulation, diseased tissue and lumen must be
encompassed by the vessel wall within every 2D cross section of the artery.
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Non-compliance with these constraints can give rise to unrealistic biophysical
phenomena. While post-processing can be applied to the segmentation map be-
fore meshing and simulation, such steps are time consuming and cumbersome,
especially when done for each segmentation map [40]. As such, we aim to en-
hance the topological viability of the coronary arteries sampled by the diffusion
model. We study how to regularize the latent space of the autoencoder during
training with a topological interaction loss, as described in Gupta et al. [12].
We adapt this loss to a 3D multi-slice context, using it to identify and penalize
critical pixels in each 2D cross section with a cross-entropy loss function using
vessel wall as a ground truth label (see Appendix C). The topological interaction
loss (LT ) is then weighted and and added to the reconstruction (LR) and KL
divergence (LKL) losses.

Adaptive Null GuidanceMorpho-skeletal Conditioning
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Fig. 3: Left: We condition the training process of a latent diffusion model through
channel-wise concatenation of the morphological (ym) and skeletal (ys) maps to the
noised latent representation (zσ). Right: Our proposed guidance algorithm operates
by specifying an null skeletal condition (y∅

s ) and adaptively updating a null morpho-
logical condition (y∅

m) based on the error between the target condition (ym) and the
morphology exhibited by the current denoiser output (ŷm).

3.3 Morpho-skeletal Conditioning

Morphological Conditioning The morphological conditioning process is shown
in Fig. 3 (left). We use a morphological regressor M to compute a morphological
conditioning map ym = M(x) ∈ Rm×h×w×d that is concatenated to the latent
representation z to condition the denoising process. To do this, our morpho-
logical regressor M spatially encodes local morphological information through
cross sectional features along the depth dimension of the straightened coronary
segmentation map. This process results in a set of morphological feature vectors
M ∈ Rm×D, where m represents the number of 2D morphological attributes and
D signifies the number of frames along the artery centerline. The features are
calculated, normalized by the 2nd and 98th percentile attribute values within
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the training set, and appropriately downsampled for concatenation (see Ap-
pendix D.1).

Skeletal Conditioning The skeletal conditioning process is shown in Fig. 3
(left). We use a skeletal regressor S to compute a skeletal conditioning map
ys = S(x) ∈ R1×h×w×d that is concatenated to the latent representation z to
condition the denoising process. To do this, our skeletal regressor S encodes
global bifurcational information by finding the luminal skeleton S ∈ RH×W×D,
which describes the branching structure of the coronary arteries. We then com-
pute, process, and resize the skeleton map to produce the skeletal conditioning
signal (see Appendix D.2). We zero out the skeletal condition with a probability
of 0.2 to jointly train an unconditional model with respect to the lumen skeleton.

3.4 Morpho-skeletal Guidance

Loss Guidance We formulate loss-based guidance in terms of the gradient
derived from a morphological loss Lm and skeletal loss Ls, as can be seen in Al-
gorithm 1. Each loss term is defined as the L2 norm between the target morpho-
skeleton and the morpho-skeleton measured from synthetic segmentation maps
by the differentiable regressor functions M̄ and S̄ (see Appendix F).

Lm = ∥ym − M̄(x)∥22 and Ls = ∥ys − S̄(x)∥22, (4)

where the default choice of segmentation maps x is obtained by decoding the
denoised latent from the diffusion model ẑ0 such as that in Chung et al. [4]. Clas-
sifier guidance [14] can be implemented by decoding the intermediately noised
latents zσ to obtain x. Finally, we guide the conditional denoising process by
using the gradient of the loss with respect to zσ and a guidance term (w − 1) :

Dw
θ (zσ;σ,ym,ys)︸ ︷︷ ︸
Guided Denoising

= Dθ(zσ;σ,ym,ys)︸ ︷︷ ︸
Cond. Denoising

+(w − 1)∇zσ (Lm + Ls)︸ ︷︷ ︸
Gradient Guidance

, (5)

Adaptive Null guidance To circumvent the computational cost of backprop-
agating through the diffusion model, VAE decoder, and regressors, we formu-
late a null-conditional guidance method based on simple and non differentiable
morphological measurement functions, as can be seen in Fig. 3 (right) and Algo-
rithm 2. We take inspiration from classifier-free guidance (CFG), which guides
the denoising process by a weighted combination of the denoiser output con-
ditioned by the target conditioning signals (ym,ys) and the null conditioning
signals (y∅

m,y∅
s ):

Dw
θ (zσ;σ,ym,ys)︸ ︷︷ ︸
Guided Denoising

= wDθ(zσ;σ,ym,ys)︸ ︷︷ ︸
Cond. Denoising

+(1− w)Dθ(zσ;σ,y
∅
m,y∅

s )︸ ︷︷ ︸
Null Denoising

, (6)

where w is a guidance weight typically set to be larger than 1. To enable con-
ventional classifier-free guidance, we train an unconditional diffusion model and
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use it to guide sampling. We implement our proposed algorithm, adaptive null
guidance (ANG), by adaptively updating the null signal for the morphological
condition y∅

m based on the difference between the target morphology ym and
the morphology derived from the current denoised output ŷm = M(x̂0).

y∅
m = M(x̂0) + (M(x̂0)− ym)︸ ︷︷ ︸

Morph. Error

, (7)

where M is a morphological regressor function that is not required to be dif-
ferentiable, and the segmentation map x̂0 is decoded from the denoiser output
ẑ0 = Dθ(zσ,ym,ys, σ). Skeletal guidance is implemented similar to conventional
CFG, where the skeletal condition y∅

s is set as an empty mask.

Morpho-skeletal Regressors for Guidance Our proposed guidance meth-
ods require morphological or skeletal regressors to guide the reverse diffusion
process. For null guidance, we leverage nondifferentiable morphological regres-
sor functions M, as well as a hard skeletonization method S, developed by Sato
et al. [33], which produces high fidelity estimations of the coronary morphoskele-
ton. Loss guidance, in contrast, requires that the regressors be differentiable to
calculate gradients. A soft morphological regressor M̄, consisting of differen-
tiable image processing operations, is used when possible for morphological loss
guidance. We further implement a neural morphological regressor M̄ϕ, to ex-
tend loss guidance to morphological features that cannot be easily derived in
a differentiable fashion. The neural morphological regressor is trained on high
fidelity morphological features from the ground truth morphological regressor
M. For skeletal loss guidance, our skeletal regressor S̄ leverages an iterative
soft skeletonization algorithm [35] consisting of erosions and dilations. However,
since soft skeletonization methods can exhibit limited performance compared to
non-differentiable methods, we also implement a neural skeletal regressor S̄ψ to
regress high fidelity skeletons (see Appendix F).

Algorithm 1 Loss Guidance
Require: Dθ,ym,ys, σ, zσ, w,M̄, S̄
1: ẑ0 ← Dθ(zσ;σ,ym,ys)
2: x̂0 ← DLDM (ẑ0)
3: Lm ← ∥ym − M̄(x̂0)∥22
4: Ls ← ∥ys − S̄(x̂0)∥22
5: D̂θ ← ẑ0 + (w − 1)∇zσ (Lm + Ls)
6: return D̂θ

Algorithm 2 Adaptive Null Guidance
Require: Dθ,ym,ys, σ, zσ, w,M
1: ẑ0 ← Dθ(zσ;σ,ym,ys)
2: x̂0 ← DLDM (ẑ0)
3: y∅

m ←M(x̂0) + (M(x̂0)− ym)
4: y∅

s ← ∅
5: D̂θ ← wẑ0+(1−w)Dθ(zσ;σ,y

∅
m,y∅

s )
6: return D̂θ



Morpho-skeletal Diffusion Models 9

4 Experiments

4.1 Dataset

We employ a dataset comprising 62 Coronary Computed Tomography (CCTA)
images of patients with coronary artery disease [37], from which 222 unique 3D
segmentation map patches were extracted (see Appendix B). Each segmentation
map contains lumen, vessel wall, and diseased calcified tissue within the straight-
ened coronary artery. Consequently, each 3D segmentation map has dimensions
of 4 × 128 × 128 × 128. As the lateral resolution of the segmentation maps is
larger than the in-plane resolution, the arterial segmentation maps in the results
section are visualized with isotropic resolutions by interpolation along the depth
dimension.

4.2 Evaluation Metrics

We calculate conditional fidelity, morphological quality, and topological qual-
ity for evaluation. Conditional fidelity is measured for both morphological and
skeletal conditioning. Morphological conditioning fidelity is defined as the mean
absolute error between the target morphological features and the features derived
from the synthetic coronary segmentation map. Skeletal conditioning fidelity is
defined as the mean absolute error between the number of branches derived
from the target skeleton and the skeleton derived from the synthetic coronary
segmentation map. To quantify morphological quality, we record 12 morpholog-
ical features of each 3D artery in addition to 8 features for all 2D cross sections
(see Appendix D.1). We calculate the Frechet Distance (FD), Precision, and
Recall between generated and training segmentation maps for both 3D and 2D
features respectively, similar to previous approaches [16]. For topological quality,
we define the % of topological violations as the proportion of 2D cross sections
within each coronary segmentation map that contains a critical pixel, defined by
adjacency relations between the calcium, lumen, or background labels.

4.3 Enforcing Topological Constraints

We first compare the effect of applying our topological loss to the VAE latent
space. We train two VAE models with and without a topological loss and use
them to reconstruct 100 coronary segmentation maps in our training set. We
specifically enforce that the calcium and lumen tissues be encompassed by the
vessel wall. Tab. 1 shows that VAEs reconstruct arteries with similar levels of
topological errors to the train set. When using a topological loss during training,
the rate of topological errors is reduced by an order of magnitude. This can be
seen in Fig. 4 where topological regularization reduces the presence of topological
defects. We then compare the effect of topologically regularized VAEs on LDM
training. We train two unconditional LDM’s and sample 200 coronary artery
segmentation maps from each model, using 100 sampling steps each. Tab. 1
shows topological regularization of the VAE latent space reduces topological
violations in synthetic segmentation maps.
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Table 1: Left: Topological interaction violations exhibited by segmentation maps that
were autoencoded by various VAE models. Training a VAE with topological interac-
tion losses improves topological quality. Right: Topological interaction violations by
segmentation maps sampled from LDMs. Topological regularization of the LDM latent
space improves the topological quality of generated arteries.

VAE Topo. Viol. (%)
Training Lumen Calcium
Train Set 18 16
LR + LKL 17 15

LR + LKL + LT 0.5 1.1

LDM Topo. Viol. (%)
Training Lumen Calcium

VAE w/o LT 1.44 9.21
VAE w LT 0.10 2.61

Training Data VAE w/o VAE w/

Fig. 4: Longitudinal and cross sectional slices of coronary segmentation maps. First
column shows that patient-specific segmentation maps from the training set exhibit
several topological defects such as lumen and calcium tissues not being fully contained
within vessel wall tissue (white arrows). Second and third columns show the effect of
autoencoding coronary segmentation maps with (right) or without (center) using a
topological loss LT during training.

4.4 Enforcing Morpho-skeletal Constraints

Conditioning Signal Ablation Study We examine the impact of morpholog-
ical and skeletal conditioning on conditional fidelity and morphological quality
in Tab. 2. To condition only on morphology or skeletal structure, we train the
original LDM and drop the corresponding conditioning signal. For consistency,
our unconditional model is trained by dropping out both conditions. Our de-
fault morphological condition consists of the cross-sectional area curves for the
lumen and calcium tissues. The morphological and skeletal features were de-
rived from the validation set and used to sample 200 segmentation maps with
100 sampling steps. Joint conditioning of both skeleton and morphology shows
similar conditioning fidelity to conditioning on each constraint alone. Morpho-
logical conditioning alone improves skeletal fidelity as compared to unconditional
sampling, likely due to the lumen area curve weakly indicating the presence of
bifurcations.

Evaluating Morpho-skeletal Guidance Strategies We study the impact of
varying the morpho-skeletal guidance weight on a morpho-skeletally conditioned
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Fig. 5: Example morphological features, skeleton depth maps and synthetic segmen-
tation map cross sections for various guidance methods. Filled in regions within mor-
phological plots indicate standard deviation over 10 generated segmentation maps. A
guidance weight of 5 is used when applicable. Our proposed guidance method (ANG)
improves conditional fidelity while maintaining good visual quality.

LDM for various guidance methods. We evaluate three strategies for loss guid-
ance and two strategies for null guidance. For loss guidance, we implement i)
classifier-guidance (CG-Soft) and ii) diffusion posterior sampling with differen-
tiable morpho-skeletal regressors M̄ and S̄ (DPS-Soft) as well as iii) a variant of
DPS with neural network regressors M̄ϕ and S̄ψ (DPS-NN). For null guidance,
we implement i) classifier-free guidance (CFG) using a separately trained uncon-
ditional model and ii) Adaptive Null-Guidance (ANG) with a non-differentiable
morphological regressor M. We evaluated every method by sampling 200 arteries
with 25 sampling steps for each combination of guidance weight and method. The
input morpho-skeletal conditions were sampled from the validation set. Qualita-
tive results can be seen in Fig. 5, where an unguided diffusion model can capture
the variation in the lumen area but is unable to achieve high fidelity with respect
to the calcium area. We see that morpho-skeletal guidance enhances conditional
fidelity for all methods but CFG, which produces low quality segmentation maps
with increasing guidance. ANG exhibits the best mix of conditioning fidelity and
visual quality as compared to a method such as DPS-Soft, which has good con-
ditional fidelity but produces un-physiological artifacts. These observations are
reinforced in Fig. 6, which shows that ANG outperforms all methods in terms of
both morphological and skeletal conditioning fidelity, while maintaining similar
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Fig. 6: Conditional fidelity and quality metrics for various guidance methods over
several guidance weights. Our guidance method (ANG) enables enhanced conditioning
fidelity at the cost of slightly decreased morphological and topological quality.

or slightly decreased recall values. Furthermore, ANG exhibits the lowest sam-
pling time and memory usage for regressor based guidance strategies (Tab. 2)
as it does not require the use of backpropagation. However, it can be seen that
increasing the guidance weight for ANG increases the number of topological
violations and causes a decrease in 3D morphological precision.

Skeleton

Morph. Area Lumen Area
Calcium Area

Disentangled Conditioning Flexible Conditioning

Lumen Area
Calcium Thickness

Lumen Area
Calcium Arclength

Fig. 7: Left: Synthetic coronary segmentation maps conditioned on different morpho-
logical features (columns) and lumen skeletons (rows) obtained from patient specific
coronary segmentation maps. Right: Morphological features produced by conditioning
on different combinations of lumen and calcium features (columns). We used adaptive
null guidance with a weight of 5 to sample all coronary segmentation maps.
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Table 2: Left: Ablation study for conditioning mechanisms. Joint conditioning im-
proves conditional fidelity and morphological quality as compared to morphological
conditioning alone. Right: Sampling speed and GPU memory usage comparison for a
single sample over different guidance methods with 100 sampling steps. ANG is the
most computationally efficient regressor-based guidance method.

Conditional Morph. Morph.
Method Fidelity Prec. Rec.

Morph. Skel. 3D 2D 3D 2D
Uncond. 117 3.2 0.68 0.89 0.85 0.72
Morph. 4.0 1.2 0.65 0.88 0.93 0.82
Skel. 117 0.47 0.62 0.88 0.79 0.73
Joint. 4.5 0.48 0.64 0.89 0.79 0.86

Guidance Sample Memory
Method Time (s) (GB)

No Regressor
Unguided 3 2.35

CFG 9 3.07
Regressor

CG-Soft 66 12.5
DPS-Soft 89 15.1
DPS-NN 80 8.6

ANG (ours) 46 6.4

4.5 Applications

Disentangled Morpho-skeletal Conditioning To demonstrate disentangled
control over both coronary morphology and luminal skeleton, we use two sets of
morphological feature vectors M and three skeleton heatmaps S derived from
patient-specific arteries. We then sample 6 synthetic segmentation maps that
correspond to all conditioning combinations. Fig. 7 shows that the same mor-
phological conditioning signal can manifest differently based on the skeletal con-
ditioning. For example, the combination of a local rise in lumen area in tandem
with a skeletal branch induces a bifurcation in the generated model, but given
a branch-less skeleton, the local rise in area manifests as an increase in lumen
area.

Flexible Morpho-skeletal Conditioning Our framework enables morpho-
logical conditioning using a variety of features, we train our LDM on different
combinations of 1) lumen area and 2) a morphological feature belonging to cal-
cium, sampling 10 segmentation maps each. We specifically condition on calcium
area, maximum calcium thickness, and maximum calcium arclength, using non
differentiable morphological regressor functions. Fig. 7 demonstrates our guid-
ance mechanism can enforce a variety of morphological constraints with high
fidelity, without the need for training neural morphological regressors.

Editing with Morpho-skeletal Conditioning To virtually edit a coronary
artery segmentation, we specify three components: morphological feature vec-
tors, a skeleton heatmap, and a corresponding mask. We either specify region
based masks, which mask out entire sections along the length of the artery, or
tissue based masks, which mask out all voxels of pre-specified labels. We edit a
coronary digital twin to create three different edited variants (Fig. 8). The first
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Fig. 8: Examples of morpho-skeleton based editing procedures applied to a coronary
digital twin (left). The patient-specific morpho-skeleton is edited and combined with a
spatial mask (red) to inpaint clinically relevant features into the artery.

edit eliminates the bifurcation within the artery, achieved through regional edit-
ing with a branch-less skeleton heatmap. The second edit increases the amount
of calcium by modifying the morphological feature vectors and applying a tissue
mask to maintain the boundaries of the vessel wall. The third edit results in lu-
minal narrowing by reducing the lumen area through the morphological feature
vectors and employing a dilated tissue mask over the lumen.

5 Limitations

Our method has several limitations. First, our morphological conditioning mech-
anism can only capture morphological features along a pre-defined direction, lim-
iting its applicability. Second, the use of 3D voxels confines our method to low
dimensional segmentation maps. Third, our guidance strategies requires the use
of the decoder for every sampling step, increasing computational costs. Lastly,
our topological regularization method reduces but does not eliminate topological
errors, meaning that arteries sampled from our model must still undergo some
amount topological post-processing.

6 Conclusions

We adapt diffusion models to conditionally generate or edit coronary atheroscle-
rotic anatomy that can be used for comparative numerical simulation studies
of coronary interventions. We introduce several methodological changes to the
training process of latent diffusion models to enable precise control over topo-
logical quality, local micro-morphology, and global skeletal structure. We fur-
ther compare and contrast different guidance strategies to ensure adherence to
morpho-skeletal constraints, proposing a novel and lightweight guidance method
that can utilize non-differentiable regressor functions to guide sampling. Our
anatomic generation framework offers the flexibility and control of simplified
parametric geometries while maintaining the realism and 3-dimensional com-
plexity of patient-specific geometries derived from medical images.
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A Supplementary Materials Overview

– In Appendix B, we provide details on dataset curation and augmentation
– In Appendix C, we detail the mathematical formulation of our topological

loss.
– In Appendix D, we discuss the extraction process for te morphological fea-

tures and the lumenal skeleton.
– In Appendix E, we provide implementation details for our autoencoder and

diffusion model
– In Appendix F, we provide implementation details for the neural networks

used for morphological and skeletal regression.
– In Appendix G, we visualize the effect of adaptive null guidance with each

conditioning mechanism in isolation. .
– In Appendix H, we provide details on our virtual angioplasty simulations

which demonstrated that synthetic segmentation maps can be used for nu-
merical simulation studies.

B Dataset Processing

Our study used 62 CCTA images obtained from the Precise Percutaneous Coro-
nary Intervention Plan (P3) Study [37]. All data has been anonymized and ap-
proved for use by an IRB. The 3D lumen and vessel wall morphology were ex-
tracted using a methodology developed by HeartFlow Inc [37], and represented
as 3D signed distance fields (SDFs) with a resolution of 0.25 mm. To obtain a
straightened representation of the coronary artery, a virtual catheter was propa-
gated along the main arterial branch with atherosclerotic lesions for each patient,
capturing 2D cross-sections of the lumen and vessel wall at intervals of 0.2 mm.
These 2D cross-sections were stacked to construct 3D segmentation maps of the
lumen and vessel wall. The total number of 2D frames extracted was 28,533,
where the average number of frames per artery was 460. For the segmentation
of calcified tissue, thresholding was applied to the corresponding 2D frames ex-
tracted by the virtual pullback. The threshold was determined as the greater
value between 450 Hounsfield units (HU) or the mean lumen density increased
by one standard deviation. The anisotropic resolution of the segmentation maps
was set at 60 µm in-plane and 0.2 mm out-of-plane to capture the longitudinal
variation inherent in the arterial structure. To obtain the 3D segmentation maps
that are fed into the VAE, we extract 3D patches consisting of 128 frames along
the artery with a random starting frame. We further apply random rotations
about the longitudinal axis to augment our dataset.

C Topological Loss Implementation

Our topological loss attempts to penalize topologically incorrect voxels within
our autoencoded coronary segmentation maps. We specifically enforce that the
vessel wall contains both lumen and calcium within any 2D frame. To enforce
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such constraints, we use the topological loss as described by Gupta et al. [12]
and adapt it to a compound multi-slice context, applying the loss to each 2D
cross-section of the coronary segmentation map. Let F ∈ RC×H×W×D be the
multi-class segmentation map predicted by the VAE. To enforce that label-B
contains label-A, we take a cross-sectional 2D label map P ∈ RH×W and aim
to find a critical pixel map that contains label-A pixels with a label-C neighbor
and vice versa, where label-C is specifically defined as the union of all labels
that are not label-A or label-B. First, each label is expanded by 3 pixels using a
convolutional kernel K to obtain the neighborhood information N .

NA := PA ⊛K and NC := PC ⊛K, (8)

where K is set as a 2D 4-connectivity kernel. We then use the neighborhood
information to find the critical pixels of each mask (VA and VC) that fall into
the other masks neighborhood.

VA := PA ⊙NC and VC := PC ⊙NA and V := VA ⊕ VC , (9)

where ⊙ represents the Hadamard product and ⊕ represents the union operation.
We set the ground truth label map G ∈ RH×W×D as the vessel wall and use the
critical voxel map V3D with a voxel-wise cross-entropy loss Lce

LT = Lce(F⊙V3D,G⊙V3D), (10)

where the critical voxel map V3D is found by stacking the critical pixel map V
for each cross section along the depth dimension D.

D Morpho-Skeletal Feature Extraction

D.1 Morphological Features

Morphological features were extracted from multi-channel coronary artery seg-
mentation maps to quantify both 3D and 2D metrics and are detailed in Tab. 3.
Volumes and cross-sectional areas were calculated from the mean number of
positive voxels, while the stenosis ratio was calculated as the minimum lumen
area divided by the average lumen volume. Vessel burden was defined as the
ratio between vessel and lumen area at the site of minimum stenosis. Plaque
was defined as the entire vessel cross-section, consisting of the lumen, vessel
wall, and calcium. Circularity was computed as the ratio of area to the square
of the perimeter. Thickness was obtained by doubling the maximum value of
the Euclidean distance field for the 2D segmentation map. Arclength was cal-
culated as the maximum angular span of the segmentation map contours per
cross-sectional area. The centroid was measured as the distance between the
centroid and the center of the image. When a morphological feature vector is
used for conditioning, the feature curve was smoothed along the length of the
artery with a Savitzky-Golay filter using a window length of 21, corresponding
to approximately 16% of the feature vector length.
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Table 3: Recorded morphological metrics for evaluation

2D Morph. Metrics

1) Lumen area
2) Vessel area
3) Plaque area
4) Plaque centroid
5) Plaque circularity
6) Calcium area
7) Calcium thickness
8) Calcium arclength

3D Morph. Metrics

1) Lumen volume
2) Stenosis ratio
3) Vessel volume
4) Vessel burden
5) Minimum plaque circularity
6) Mean plaque circularity
7) Calcium volume
8) Calcium length
9) Maximum calcium thickness
10) Mean calcium thickness
11) Maximum calcium arclength
12) Mean calcium arclength

Table 4: Hard Skel. Parameters

Parameter Value
Const. 10
Scale 1.5

Prdf scale 1e5
Prdf exponent 5
Tick threshold 10

Table 5: Skel. Processing Parameters

Parameter Value
σskel 1

Gaussian Kernel Size 3
Max pool Kernel Size 4

Max pool Stride 4

D.2 Skeletal Features

Our skeletal regressors consist of 1) a skeletonization step, which takes in a lu-
menal segmentation map, and 2) a pre-processing step to enable concatenation
with the encoded latent representation. We leverage three types of skeletoniza-
tion: non-differentiable (hard), differentiable (soft), and neural skeletonization.
Our non-differntiable skeletonization process uses the Kimimaro library [36],
which employs the TEASAR algorithm [33], to derive a high-quality skeleton.
Our differentiable skeletonization process leverages an iterative soft skeletoniza-
tion algorithm by Shit et al. [35], which is applied on lumen segmentation maps.
Our neural skeletonization is done by a neural network trained to regress the
processed output of the non-differentiable skeletal regressor (see Appendix F).

For hard skeletonization, the pre-processing step includes conversion into
a binary voxel grid, Gaussian blurring with a standard deviation denoted by
σskel, and normalization. To reduce the grid size, we employ max pooling and
subsequently resize the skeleton map to fit the dimensions of the encoded latent
representation. For soft skeletonization, we downsample the input lumen segmen-
tation map to a size of H/2×W/2×D before skeletonization to conserve GPU
memory. The resulting skeleton is then upscaled to its original resolution and is
then processed similarly to hard skeletonization. For neural skeletonization, the
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processing step is equivalent to that of hard skeletonization. The configuration
details for the hard skeletonization and associated processing can be found in
Tabs. 4 and 5 respectively.

The outputs of our skeletonization methods along with their processed out-
puts are shown in Fig. 10. Our hard skeletonization method creates intact skele-
tons given an input lumen segmentation map. Processing the skeletons with
Gaussian blurring and max pooling retains the skeletal connectivity after resiz-
ing to a coarser resolution. In contrast, the soft skeletonization method produces
disconnected skeletal branches, which may or may not be repaired after process-
ing.

E Latent Diffusion Model Implementation

We adapt the VAE and LDM architectures specified by Kadry et al. [16] to the
case of coronary segmentation map generation. The input and output channels
of the VAE are set to a value of 4 to correspond to the number of tissues. The
number of input channels for the LDM was set to a value of 6 such that 3 channels
correspond to the encoded latent and 3 channels correspond to two morphological
conditioning maps and one skeletal conditioning map. The hyperparameters and
training configuration for the VAE and LDM are contained in Tab. 6 and Tab. 7
respectively.

Table 6: VAE Config.

Hyperparameter Value
lr 1× 10−5

Iterations 4× 104

Batch Size 2
Num. Channels [64, 128, 192]

Num. Res. Blocks 2
Downscaling Factor 4

λrecon 1
λKL 1× 10−6

λtopo 2× 10−4

Table 7: LDM Config.

Hyperparameter Value
Training

lr 1× 10−5

Iterations 5× 103

Batch Size 1
Num. Channels [128, 256, 384]

Num. Res. Blocks 2
Num. Attn. Heads 1

Attn. Res. 8, 4, 2
σdata 1

p(σ) mean 1
p(σ) std 1.2

Sampling
σmin 1× 10−2

σmax 80
ρ 3
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Fig. 9: Comparison of target morphological areas against predictions by our neural
morphological regressor. Our regressor can predict the morphological features associ-
ated with coronary segmentation maps to a high degree of fidelity.

F Morpho-skeletal Regressor Implementation

F.1 Morphological Regressor Training

The neural morphological regressor M̄ϕ consists of a 3D encoder, an adaptive
pooling layer, and an MLP head. To regress the morphological features, we first
encode the coronary segmentation map x into a latent representation of size
α× h×w× d where α is the number of latent channels. This latent representa-
tion is then processed through an adaptive average pooling layer, resulting in a
feature map of dimensions α× 1× 1× d. Subsequently, an MLP head with two
fully connected layers is applied to transform this feature map into 1D morpho-
logical features of size m× d, where m is the number of regressed morphological
features. The output is then resized to match the output shape of our original
morphological regressor M. Tab. 8 details the hyperparameters and training
details for the morphological regressor. The network is trained to minimize a
morphological regression loss Lmorph with the Adam optimizer.

Lmorph = LMSE(M(x),M̄ϕ(x)) (11)

The performance of our trained morphological regressor can be seen in Fig. 9,
in which a regressor is applied to coronary segmentation maps drawn from the
validation set. The predictions from our morphological regressor show good cor-
relation with the ground truth morphology as measured by the ground truth
morphological regressor M.
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F.2 Skeletal Regressor Training

For the skeletal regressor S̄ψ, we employ the SegResNet architecture [24], a
U-net based architecture designed to regress the skeletal heatmap for an input
coronary segmentation map x. Following the decoder stage, the resulting skeleton
voxel grid undergoes blurring and maxpooling similar to the output of the hard
skeletonization process. Tab. 9 details the hyperparameters and training details
for the skeletal regressor. The network is trained to minimize a skeletal regression
loss Lskel with the Adam optimizer.

Lskel = LMSE(S(x), S̄ψ(x)) (12)

The skeletal regressor predictions are visualized in the rightmost column of
Fig. 10. It can be seen that while the regressor was trained on the processed
output of the hard skeletonization method after pre-processing, it has learned to
regress skeletons that are similar to the soft skeletonization process, but with a
higher degree of continuity.

Skeleton Processed

Hard
Skeletonization

Skeleton Processed

Soft
Skeletonization

Lumen Skeleton Processed

Neural
Skeletonization

Fig. 10: Comparison of different skeletonization methods before and after processing.
Left column displays lumen depth maps from validation set. Center left, center right,
and rightmost columns indicate skeletonization outputs for hard, soft, and neural re-
gressors respectively. Hard skeletonization outperforms both soft skeletonization and
the neural skeletal regressor.

G Additional Ablation Results

In this section, we further study the effect of ablating one or more condition-
ing signals during LDM training. We use four LDMs corresponding to 1) no-
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Table 8: Morph. Regressor Config.

Parameter Value
lr 1× 10−4

Iterations 4000
Batch size 1

Num. Channels [32, 64, 96]
Num. Res. Blocks 2

Num. Latent Channels 64
MLP Channels 1024

Table 9: Skel. Regressor Config

Parameter Value
lr 1× 10−4

Iterations 4000
Batch size 1

Encoder Channels [16, 32, 32, 64]
Decoder Channels [64, 64, 64, 64]

conditioning, 2) morphological conditioning only, 3) skeletal conditioning only,
and 4) joint conditioning. For each LDM, we sample 100 segmentation maps with
25 sampling steps, sweeping over a range of guidance weights for all but the un-
conditional model. Unless stated otherwise, we used adaptive null guidance with
a weight of 5, and the target morpho-skeletons were derived from the validation
set. In addition to recording metrics for sampling quality and conditional fidelity
(Fig. 18), we visualize the distribution of morphological features as a set of 1D
KDE plots (Figs. 11 to 14) and visualize the segmentation maps in Fig. 17.

Unconditional Generation Fig. 11 shows that unconditional generation can
recapitulate the distribution in various morphological features in the training set,
with good coverage compared to the validation set. Unconditionally generated
segmentation maps can be seen in Fig. 17, where unconditional sampling can
synthesize a wide array of morphological and skeletal features.

Joint Conditioning Fig. 12 shows that guidance improves the similarity of
the synthetic distribution to the validation distribution for most morphological
features. This can also be seen in Fig. 16, where guidance increases morphologi-
cal conditioning fidelity for a variety of target morphological features. Similarly,
Fig. 15 displays skeleton depth maps for various adaptive null guidance values.
Our joint conditioning framework can produce a wide variety of skeletal con-
figurations without components that are disconnected from the main branch.
Synthetic segmentation maps produced by joint conditioning can be seen in
Fig. 17, which exhibits a wide array of morphological and skeletal features.

Morphological Conditioning Only Fig. 13 shows that morphological guid-
ance slightly improves the similarity of between the morphological distributions
of synthetic and validation segmentation maps. This can be seen in Fig. 18,
which shows enhanced morphological conditioning fidelity with increasing guid-
ance strength, similar to joint guidance. segmentation maps sampled by mor-
phological conditioning can be seen in Fig. 17, which exhibit non-physiological
bifurcation structures.
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No Conditioning

Training Validation Unconditional

Fig. 11: KDE plots of morphological
features comparing the training set,
validation set, and the set of segmen-
tation maps sampled through uncondi-
tional generation.

Lum. Vol. Ves. Vol. Calc. Vol. Ves. Burden

Stenosis Rat. Mean Plaque Circ. Min Plaque Circ. Calc. Len.

Mean Calc. Thick. Max Calc. Thick. Mean Calc Arclen. Max Calc. Arclen.

Joint Conditioning

Validation Unguided Guided

Fig. 12: KDE plots comparing the
morphological feature distributions of
synthetic segmentation maps produced
by joint conditioning.

Skeletal Conditioning Only Fig. 14 shows that unguided skeletal condition-
ing does not significantly change the morphological distribution of features as
compared to the validation set. However, with skeletal guidance, the morpho-
logical distributions shift towards exhibiting smaller lumen, vessel, and calcium
volumes. Fig. 18 shows that skeletal guidance alone can slightly improve skele-
tal fidelity as compared to joint guidance. This comes at the cost of reduced
recall and increased Frechet distance, likely due to the morphological bias to-
wards smaller volumes. Segmentation maps produced by skeletal conditioning
can be seen in Fig. 17, where skeletal conditioning produces a variety of realistic
bifurcation structures.

H Virtual Angioplasty Simulation

To demonstrate the compatibility of our synthetic arteries with numerical sim-
ulation, we simulate a virtual intervention one two arteries generated from a
patient-specific morpho-skeleton. Our synthetic segmentation map is processed
by the methodology outlines by Straughn et al. [40], in which the lumen, vessel
wall, and calcium labels are morphologically interpolated and processed to pro-
duce an isotropic segmentation map which is used to produce a 3-dimensional
multi-material tetrahedral mesh. We then utilize the 3D mesh for virtual angio-
plasty simulations using the finite element method through the commercial code
ABAQUS Explicit [6]. Briefly, the simulation platform consists of the coronary
artery, stent, and deployment balloon. The artery materials included vessel wall,
which was defined as a relatively soft hyperelastic-plastic material, and calcium,
which was defined as a stiff elastic material [40]. The stent was geometrically
modelled with hexahedral elements and exhibits an elasto-plastic constitutive
law [29]. The balloon was geometrically modelled with shell elements and ex-
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Fig. 13: KDE plots comparing the mor-
phological feature distributions of syn-
thetic segmentation maps produced by
morphological conditioning alone.
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Fig. 14: KDE plots comparing the mor-
phological feature distributions of syn-
thetic segmentation maps produced by
skeletal conditioning alone.

hibits a hyperelastic constitutive law [29]. The first stage of the simulation con-
sists of stent crimping, in which the stent begins at a nominal diameter of 3mm
and is compressed to a smaller diameter of 1mm with rigid crimping planes. In
the second stage, the stent and a folded balloon are inserted into the straight-
ened artery model, at which point the balloon is inflated to a pressure of 14 atm,
expanding the stent into the arterial wall.
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Fig. 15: Comparison of target morphological features for lumen and calcium against
the equivalent morphological features derived from synthetic segmentation maps using
adaptive null guidance at various guidance weights. Our guidance method enhances
morphological conditional fidelity as guidance weight increases.
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Fig. 16: Comparison of skeleton depth maps derived from synthetic segmentation maps
using adaptive null guidance at various guidance weights.
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Morph. Only

Morph. & Skel.Skel. Only

Uncond.

Fig. 17: Example segmentation map cross sections for unconditional sampling, mor-
phological conditioning only, skeletal conditioning only, and joint morphological and
skeletal conditioning. No guidance was used during sampling.
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Fig. 18: Conditional fidelity and sampling quality metrics for adaptive null guidance
using morphological, skeletal, and joint conditioning.
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