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Abstract— Coronary computed tomography angiogra-1

phy (CCTA) provides 3D information on obstructive coro-2

nary artery disease, but cannot fully visualize high-3

resolution features within the vessel wall. Intravascular4

imaging, in contrast, can spatially resolve atherosclerotic5

in cross sectional slices, but is limited in capturing 3D6

relationships between each slice. Co-registering CCTA and7

intravascular images enables a variety of clinical research8

applications but is time consuming and user-dependent.9

This is due to intravascular images suffering from non-10

rigid distortions arising from irregularities in the imag-11

ing catheter path. To address these issues, we present a12

morphology-based framework for the rigid and non-rigid13

matching of intravascular images to CCTA images. To do14

this, we find the optimal virtual catheter path that sam-15

ples the coronary artery in CCTA image space to reca-16

pitulate the coronary artery morphology observed in the17

intravascular image. We validate our framework on a multi-18

center cohort of 40 patients using bifurcation landmarks19

as ground truth for longitudinal and rotational registra-20

tion. Our registration approach significantly outperforms21

other approaches for bifurcation alignment. By providing22

a differentiable framework for multi-modal vascular co-23

registration, our framework reduces the manual effort re-24

quired to conduct large-scale multi-modal clinical studies25

and enables the development of machine learning-based26

co-registration approaches.27

This work was partially supported by the National Institute28

of Health (1R01HL161069) to ERE and FRN and Heartflow,29

Inc.30

KK, MLO, ERE are with the Institute of Medical Engi-31

neering, Massachussetts Institute of Technology, Cambridge,32

MA, USA (emails: kkadry@mit.edu, molender@mit.edu,33

ere@mit.edu)34

AS, KP, MS, AU, and CT are with HeartFlow, Inc., Red-35

wood City, CA, 94063, USA (emails: aschuh@heartflow.com,36

kpetersen@heartflow.com, mschaap@heartflow.com, aupde-37

pac@heartflow.com, ctaylor@heartflow.com)38

AK is with the Meinig School of Biomedical En-39

gineering, Cornell University, Ithaca, NY 14850 (email:40

ak944@cornell.edu)41

DM is with the Department of Molecular Medicine and42

Surgery, Karolinska Institute, Stockholm, Sweden,(email:43

david.marlevi@ki.se)44

TM is with the Cardiovascular Center in Aalst, OLV Clinic,45

Aalst, Belgium, (email: takuyamizukami@coreaalst.com) 46

FRN is with the Department of Surgery Brigham and 47

Women’s Hospital Harvard Medical School Boston, MA 48

02115, (email: frikhtegarnezami@bwh.harvard.edu) 49

Index Terms— Slice-to-volume registration, Image regis- 50

tration, free-form deformation, spatial transforms, optical 51

coherence tomography, multi-modal data fusion. 52

I. INTRODUCTION 53

Coronary computed tomography angiography (CCTA) is a 54

3D imaging modality that allows for the detection of stenotic 55

atherosclerotic lesions and assists clinicians in the diagnosis 56

and treatment of coronary artery disease (CAD). In contrast 57

to the current gold standard of digital subtraction angiography 58

(DSA), CCTA can be used to create 3D computational models 59

of coronary blood flow that can estimate fractional flow reserve 60

(FFR-CT), [1]. CCTA also provides information on soft-tissue 61

intraplaque components within the wall, albeit with some lim- 62

itations. For example, CCTA suffers from blooming artifacts 63

in the presence of highly attenuating calcium deposits [2], 64

[3], which, combined with comparably low image resolution, 65

creates difficulties in resolving highly calcified arteries. In con- 66

trast, catheter based imaging modalities such as intravascular 67

ultrasound (IVUS) and optical coherence tomography (OCT), 68

provide high-fidelity cross-sectional images of the lumen and 69

intra-plaque. However, catheter based modalities do not 70

contain information on the 3D pose (location and orientation) 71

for each frame, making it difficult to reconstruct the artery 72

in 3D. Recovering the pose of each intravascular frame within 73

the CCTA image is known as co-registration, and enables three 74

key clinical applications. First, intravascular image slices can 75

be directly used as ground-truth in clinical studies to study the 76

viability of CCTA in assessing CAD-related diagnostic metrics 77

such as luminal area [1], calcium morphology [4], and plaque 78

burden [5]–[7]. Second, co-registration enables the creation 79

of matched multi-modal datasets, which can be used to train 80

neural networks for the segmentation of lumen and plaque 81

within CCTA images. Third, high-fidelity segmentations de- 82

rived from intravascular images can be used in tandem with 83

the recovered poses to create high fidelity coronary digital 84

twins [8]–[10]. Such patient-specific models enable the physics 85
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based simulation of various biophysical phenomena such as86

hemodynamics [1], biomechanical pressurization [8], [9], and87

virtual interventions [11], [12], which guides clinical decision88

making and pathophysiological research.89

Manual co-registeration of CCTA and intravascular images90

is however, a challenging and time consuming task. Typically,91

cross-sectional frames of interest are extracted from the CCTA92

images which then have to be matched with corresponding93

frames from a catheter-based intravascular acquisition [1], [4],94

[5], [7]. Rigid registration in the longitudinal and rotational95

directions is usually achieved by matching single landmarks96

in both modalities, such as large bifurcations [4]. However,97

the beating of the heart, the irregular motion of the imaging98

catheter, and the rotation of the catheter about its own axis99

create non-rigid distortions that accumulate along the length100

of the pullback [13]. Manually correcting for such artifacts101

is prohibitively time-consuming, requiring a cardiologist to102

mark multiple fiduciary points in both images and locate103

the equivalent frames accordingly. There is therefore a need104

for computational algorithms that non-rigidly register CCTA105

images to corresponding intravascular data in an automatic106

fashion.107

Automatic co-registration techniques for longitudinal align-108

ment typically consist of discretely optimizing a cost function109

over a set of longitudinal or rotational image shifts, where110

the cost function varies depending on the modalities being111

registered. Some proposed cost functions include metrics such112

as lumen diameters [14], lumen contours [15], [16], calcium113

thickness [15], [17], and image pixel intensities [13]. In ad-114

dition to longitudinal co-registration, our prior work includes115

rigid rotational registration for intravascular pullbacks based116

on extracted features such as luminal contours [16]. However,117

the registration accuracy of all rigid registration methods is118

compromised by inconsistent motor pullback speeds, rotational119

drift, and cardiac motion, as these introduce non-rigid longi-120

tudinal and rotational distortions that misalign image features121

such as diseased plaque and bifurcations.122

To compensate for the longitudinal, rotational, and trans-123

verse motion of the catheter, several non-rigid registration124

approaches have been proposed. Non-rigid registration of125

intravascular imaging datasets has been predominantly per-126

formed through dynamic time warping (DTW) and dynamic127

programming (DP) [13], [15], [18]. However, DTW introduces128

non-physiological assumptions into the registration process129

by discretely skipping or repeating intravascular frames, as-130

sumed to be evenly spaced along the longitudinal direction.131

In contrast to discrete approaches, previous works, including132

our own, have leveraged continuous non-rigid registration133

methods to model the longitudinal stretch and rotational drift134

between intravascular imaging frames using affine transforms135

and spline interpolation [1], [19]. While such continuous non-136

rigid methods are more realistic, they extensively rely on137

manual pre-processing and the annotation of all bifurcation138

zones for image registration and do not account for the bending139

of the catheter away from the vessel centerline.140

Further, there has been an increasing interest in machine141

learning approaches to image co-registration in which a neural142

network is trained to predict a spatial transform that maps143

a moving image onto a static target image [20]–[22]. Such 144

approaches critically rely on differentiable spatial transforms 145

and rendering operations for the back-propagation of gradients 146

to adjust the neural network weights [23], [24]. While such 147

transforms are available for co-registration of 3D medical 148

images in rectangular coordinates [20], a similar framework 149

that accounts for the unique variation in intravascular catheter 150

motion has yet to be developed. 151

Given the previous limitations in prior approaches, we here 152

propose a novel slices-to-volume registration framework that 153

aligns a set of intravascular image slices to their equivalent lo- 154

cation in a volumetric CCTA image. The proposed continuous 155

registration methodology does not require manual matching 156

of morphological landmarks, requires only the morphology 157

(lumen and vessel wall) for both modalities, along with the 158

centerline within the CCTA image space. Specifically, we 159

explore the problem of reconstructing the path of a virtual 160

catheter sampling from a 3D CCTA-derived lumen morphol- 161

ogy such that the cross sectional slices sampled by the virtual 162

catheter match the image slices from the equivalent intravas- 163

cular pullback. We specifically demonstrate our algorithm 164

in the case of OCT intravascular pullbacks, where our key 165

contributions are as follows: 166

• We introduce a differentiable and non-rigid spatial trans- 167

form that acts on a set of frames defining the path 168

of a virtual catheter in 3D space. The transform is 169

formulated in terms of intravascular catheter motion, 170

specifically modelling longitudinal, rotational, and trans- 171

verse distortions. Our spatial transform is regularized to 172

enforce priors regarding cumulative motion distortions 173

and smoothness, while also being compatible with deep 174

learning registration frameworks. 175

• We propose a rigid and non-rigid registration procedure 176

for intravascular image slices and CCTA volumes, based 177

on matching lumen and vessel wall morphology between 178

modalities. The virtual catheter is initialized by the rigid 179

registration step and then stretched, twisted, and bent by 180

the non-rigid step through gradient-based optimization. 181

For non-rigid registration, we choose to optimize the 182

similarity between luminal distance fields and introduce 183

several pre-processing steps to stabilize the process. 184

• We demonstrate the capabilities of our registration pro- 185

cedure on a multi-center dataset of 40 CCTA and OCT 186

images with manually annotated landmarks. We directly 187

benchmark against our previously developed discrete 188

optimization approach and demonstrate improved regis- 189

tration error. 190

II. METHODOLOGY 191

An overview of the co-registration pipeline is detailed in 192

Fig. 1. In brief, our registration algorithm II-A takes as input 193

morphological representations of lumen and vessel wall for 194

the CCTA and intravascular images, in addition to the CCTA 195

lumen centerline. In this study, we utilize OCT pullbacks 196

as our intravascular imaging modality. For rigid registration, 197

a virtual catheter is first initialized from the centerline in 198

the form of 3D frame positions and poses detailing the 199
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Fig. 1. Overview of the proposed registration pipeline. Lumen and vessel wall morphologies are derived from OCT and CCTA images and given as
input to the registration process along with an initial centerline centerline in CCTA space. A rigid co-registration step initializes the virtual catheter
path (blue), where the pose of each frame is described by orientation vectors (red and orange arrows). The virtual catheter path is used to sample a
virtual pullback of the CCTA morphology in the form of a luminal distance field. The morphological similarity between the OCT and CCTA pullbacks
is used to guide the non-rigid registration step. The alignment process stretches, twists, and bends the virtual catheter frames to produce an aligned
catheter path (green) that can sample equivalent CCTA frames for each intravascular image slice.

orientation of each frame. These frames are used to sample200

cross sections from the CCTA morphology to produce a virtual201

pullback (section II-A.2). The sampled pullback is used for202

longitudinal and rotational alignment (section II-A.3), which203

outputs crop indices and a rotation angle that initialize the204

non-rigid registration process. Non-rigid registration (section205

II-A.4) optimizes a spatial transform applied to the virtual206

catheter that aligns the morphology between the virtual and207

intravascular pullbacks. The non-rigid spatial transformation208

consists of longitudinal (section II-A.6), rotational (section II-209

A.7), and transverse (section II-A.8) deformation steps. To210

evaluate our method, we usemorphological representations211

derived from a multi-center clinical image dataset and evaluate212

the performance of our algorithm against discrete optimization213

baselines (section II-B).214

A. Co-registration framework215

1) Input morphological representations: As CCTA and in-216

travascular images are dissimilar in their image characteris-217

tics, we choose to align the images based on morphologi-218

cal representations of the lumen and vessel wall. The four219

input morphologies consist of the luminal Signed Distance220

Fields (SDFs) (L3D
CT,L

pull
OCT), as well as the vessel wall SDFs221

(W3D
CT,W

pull
OCT) for both modalities. The superscripts ’3D’ and222

’pull’ indicate whether the SDF is located in 3D cartesian223

space or the cylindrical space defined by the catheter respec-224

tively.225

2) Virtual catheterization: To compare both modalities in226

the same coordinate system, we leverage curved-planar refor-227

mation [25], where a virtual catheter samples cross-sectional228

slices from the CCTA lumen and vessel wall to produce Lpull
CT229

and Wpull
CT respectively. The virtual catheter is defined by a230

set of frames in 3D space that are constructed through a two231

step process that takes as input the set of n CCTA centerline232

points R ∈ Rn×3 arranged in 3D space. The first step consists 233

of finding the set of tangent vectors T ∈ Rn×3 by applying 234

a spatial derivative on R, defining normal vectors for each 235

frame. The second step consists of finding the orthogonal 236

orientation vectors U ∈ Rn×3 and V ∈ Rn×3 that define 237

the angular orientation of each frame. This is done through 238

randomly initializing the orthogonal vectors for the first frame 239

and applying parallel transport [26] along the centerline, which 240

ensures that all orientation vectors remain stable between 241

frames. The frames F ∈ Rn×3×4 are finally obtained by 242

concatenating the position and orientation vectors, 243

F = concat(R,T,U,V). (1)

To produce a virtual pullback, the frame matrix F is repre- 244

sented as a set of planar pointclouds and is used to sample 245

the CCTA SDFs (L3D
CT,W3D

CT) for each point, where the cross- 246

sectional size of the resulting grid matches that of the intravas- 247

cular dataset, 248

Lpull
CT = VirtualCatheter(F,L3D

CT), (2)
249

Wpull
CT = VirtualCatheter(F,W3D

CT). (3)

250

3) Rigid registration: An overview of the rigid registration 251

step can be seen in Fig. 2 and Algorithm 1. We first construct 252

the virtual catheter frames Fori from the input centerline points 253

Rori and use them to initialize the virtual pullbacks Lpull
CT 254

and Wpull
CT , which are used for longitudinal and rotational 255

registration respectively. For the rigid longitudinal registration, 256

we binarize the luminal SDFs (Lpull
CT & Lpull

OCT) and create 257

area vectors for each modality. We leverage our previous 258

work to rigidly align the pullbacks using a multi-step sliding 259

window method, minimizing the difference in area vectors 260

and bifurcation locations [16]. The resulting output consists of 261
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Fig. 2. Overview of the proposed rigid registration pipeline. Lumen area vectors from both modalities are used for rigid registration in the longitudinal
direction using a sliding window approach. The longitudinal registration is used to crop each segmentation such that they have the same starting
point for rotational registration. The vessel wall segmentations for all frames are converted to vessel thickness-angle plots and are used to determine
a single optimal rotation for the entire pullback.

Algorithm 1 Full Co-registration Algorithm

Require: Rori ▷ CCTA Original Centerline Points
Require: L3D

CT,L
pull
OCT ▷ luminal Signed Distance Fields

Require: W3D
CT,W

pull
OCT ▷ Wall Signed Distance Fields

Initialize Pullback from CCTA Morphology (Sec. II-A.2)

1: Fori ← InitFrames(Rori) ▷ Frame Positions & Poses
2: L

pull
CT ← VirtualCatheter(Fori,L3D

CT)

3: W
pull
CT ← VirtualCatheter(Fori,W3D

CT)

Rigid Registration w/ Lumen & Vessel Wall (Sec. II-A.3)

4: C← LongReg(Lpull
CT ,L

pull
OCT) ▷ Crop Indices

5: ϑ← RotReg(C,W
pull
CT ,W

pull
OCT) ▷ Rotation Angle

Non-rigid Registration w/ Lumen (Sec. II-A.4)

6: Fφ ← NonrigidReg(C, ϑ,Fori,L3D
CT,L

pull
OCT)

7: return Fφ

cropping indices C = {CCT ,COCT } determining the shared262

starting points for each modality.263

C = LongReg(Lpull
CT ,Lpull

OCT), (4)

264

For rigid rotational registration, using luminal profiles for265

rigid rotational alignment was deemed unreliable due to the266

CCTA-derived morphology being circularly symmetric. There-267

fore, we take as input the vessel wall SDFs (Wpull
CT , Wpull

OCT)268

that were correspondingly binarized to produce segmentation269

maps. For both wall segmentations, a wall thickness matrix270

H ∈ Rn×γ by tracing γ radial rays from the centroid of271

all n frames of the vessel segmentation in equally spaced272

circumferential increments. We crop the thickness matrices for273

the CCTA (HCT) and OCT (HOCT) images using the indices274

C such that they are longitudinally aligned with the same275

starting points. The optimal rigid rotation angle ϑ is obtained276

by circumferentially sliding one thickness matrix over the277

other and minimizing the mean squared error,278

ϑ = RotReg(Wpull
CT ,Wpull

OCT). (5)

279

4) Non-rigid registration overview: The non-rigid registration 280

process can be seen in Fig. 3 and Algorithm 2. The input 281

consists of the initialized frame variables Fori, cropping indices 282

C, rotation angle ϑ, and the luminal SDFs (L3D
CT, Lpull

CT ). We 283

formulate the problem in terms of finding the set of frames 284

Fφ that correspond to the original path of the intravascular 285

catheter in CCTA image space. This is done by maximizing 286

the morphological similarity between the intravascular pull- 287

back and the CCTA virtual pullback sampled with spatially 288

transformed frames Fφ. First, the rigidly initialized frames F 289

are obtained by cropping and rotating the input frames Fori ac- 290

cording to the outputs of rigid registration (C,ϑ). The updated 291

frame variables Fφ are produced through three sequentially 292

applied non-rigid spatial transforms φlong, φrot, and φtrans in the 293

longitudinal, rotational, and transverse, directions respectively: 294

Fφ = φtrans ◦ φrot ◦ φlong ◦ F, (6)

where ◦ is the composition operator. The morphological 295

similarity function was defined as the mean squared error be- 296

tween the CCTA morphology Lpull
CT sampled with the spatially 297

transformed frames Fφ and the OCT morphology Lpull
OCT that is 298

considered as a target. We specifically clamp the SDFs to only 299

have non-zero values inside the lumen to prevent the virtual 300

catheter from switching to the incorrect coronary branch: 301

L = MSE
(
clamp(Lpull

CT ), clamp(Lpull
OCT)

)
. (7)

This approach was used instead of a segmentation-based 302

similarity function, such as cross-entropy or Dice, as binary- 303

segmentation-based losses reach a minimum value when there 304

is complete overlap between segmentations and thus are poor 305

surrogates for alignment [27]. In contrast, distance field-based 306

losses continue to change even after complete overlap is 307

achieved, allowing for enhanced registration accuracy. 308

5) Virtual Catheter Manipulation: Instead of directly ma- 309

nipulating the 3D positions and orientations of the frames 310

F to produce Fφ, each spatial transform takes as input 311

one or more frame manipulation vectors that represent the 312

stretching, twisting, and bending of the original virtual catheter 313

path. As such, we define four frame manipulation vectors 314

(s,θ,du,dv) representing 1) the arclength positions along the 315
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virtual catheter path s, 2) the rotation angles of each frame θ316

about the catheter, and 3) the in-plane transverse displacements317

du and dv (see Fig. 3). This parametrization enables us to318

regularize the virtual catheter path to be smooth along the319

pullback, with independent smoothness constraints for each320

deformation type. To enforce such constraints, we control321

the frame manipulation vectors through B-spline deformations322

[28] parametrized by a sparse set of control points.323

Algorithm 2 Non-rigid Co-registration

Require: C, ϑ,Fori ▷ Crop Indices, Rotation Angle, Frames
Require: L3D

CT,L
pull
OCT ▷ Luminal Signed Distance Fields

1: sinit,θinit,d
u
init,d

v
init ← InitFrameVars()

2: ps,pθ,pu,pv ← InitCtrlPts()
3: xs,xθ ← InitRelVecs() ▷ Stretch & Twist Vectors
4: F,L

pull
OCT ← RigidInit(C, ϑ,Fori,L

pull
OCT)

5: for i ∈ {1...,Epochs} do ▷ Optimization Loop

Stretch Frames (Sec. II-A.6)

6: ps ← DeformCtrlPts(xs) ▷ Equation 10
7: s← BsplineDeform(sinit,p

s) ▷ Equation 9
8: Fs ← φlong(s) ◦ F. ▷ Equation 8

Twist Frames (Sec. II-A.7)

9: pθ ← DeformCtrlPts(xθ) ▷ Equation 13
10: θ ← BsplineDeform(θinit,p

θ) ▷ Equation 12
11: Fθ ← φrot(θ) ◦ Fs ▷ Equation 11

Bend Frames (Sec. II-A.8)

12: du ← BsplineDeform(du
init,p

u) ▷ Equation 16
13: dv ← BsplineDeform(dv

init,p
v) ▷ Equation 16

14: Fφ ← φtrans(d
u,dv) ◦ Fθ ▷ Equation 14

Update Parameters

15: L
pull
CT ← VirtualCatheter(Fφ,L3D

CT)

16: L ←MSE
(
clamp(Lpull

CT ), clamp(Lpull
OCT)

)
▷ Loss

17: xs, xθ,pu,pv ← Adam(∇L) ▷ Backprop & Step
18: end for
19: return Fφ

6) Non-rigid longitudinal registration: The spatial transform324

φlong governing the inter-frame spacing along the virtual325

catheter takes in the arclength vector s and resamples a spline326

based on the initial centerline points R to produce an updated327

set of centerline coordinates Rs. The frame poses (Ts,Us,328

and Vs) are then recalculated and used to update the frame329

matrix:330

Fs = φlong(s) ◦ F. (8)

The initial arclength vector sinit ∈ Rn is set to be monoton-331

ically increasing from 0 to 1, and is updated by a B-spline332

transform:333

s = Bsps, (9)

in which s ∈ Rn,Bs ∈ Rn×ms ,ps ∈ Rms where n is334

the number of frames and ms is the number of longitudinal335

control points. Bs is the univariate B-spline tensor and is336

pre-computed from the initial arclength vector sinit, while ps
337

is the deformed control point vector that is initialized as a338

monotonically increasing vector of length ms.339

To account for the cumulative effect of catheter motor speed 340

variation, we do not directly optimize the control points ps. In- 341

stead, we optimize for the relative stretch vector xs ∈ Rms−1
342

that determines the cumulative displacement of each control 343

point ∆psi , with the most proximal control point remaining 344

fixed, 345

∆psj = xs
j +

j−1∑
k=0

xs
k. (10)

To regularize the virtual catheter motion and prevent backward 346

movement, the relative deformation of each control point ∆psj 347

is limited to a fraction of the distance between the control 348

points through clamping. 349

7) Non-rigid rotational registration: The rotational transform 350

φrot is applied to the longitudinally adjusted frames Fs and 351

takes in the rotation angles θ to produce the rotationally 352

adjusted frames Fθ. This is done by rotating the longitudinally 353

adjusted orientation vectors Us and Vs about the tangent 354

vector set Ts. 355

Fθ = φrot(θ) ◦ Fs (11)

The initial rotation vector θinit ∈ Rn is initialized with zeros 356

and is updated by a B-spline transform: 357

θ = Bθpθ, (12)

where θ ∈ Rn,Bθ ∈ Rn×mθ ,pθ ∈ Rmθ , where mθ is 358

the number of control points and Bθ is a B-spline tensor 359

that is pre-computed from the initial rotation vector θinit. The 360

rotational control point vector pθ is initialized as a zero vector 361

and is updated similarly to the longitudinal control points, 362

where the rotation defined for each control point is updated by 363

a relative twist vector xθ ∈ Rmθ−1. The cumulative rotation 364

value for each control point is therefore defined by: 365

∆pθj = xθ
j +

j−1∑
k=0

xθ
k, (13)

8) Non-rigid transverse registration: The transverse trans- 366

form φtrans is applied to the rotationally adjusted frames Fθ
367

and takes as input displacement magnitude vectors du and dv
368

to produce the final frames Fφ. This is done by displacing the 369

rotationally aligned centerline points Rθ along Uθ and Vθ to 370

obtain Rφ. 371

Fφ = φtrans(d
u,dv) ◦ Fθ (14)

In contrast to the longitudinal and rotational transforms, the 372

transverse transform φtrans consists of two separate operations 373

(φu
trans and φv

trans) that control the transverse displacement of 374

the catheter path away from the artery center in orthogonal 375

directions. 376

φtrans(d
u,dv) = φu

trans(d
u) ◦ φv

trans(d
v), (15)

The initial in-plane transverse displacements du and dv
377

are initialized to be zero and are calculated by the following 378

relation: 379

du = Bupu. and dv = Bupv. (16)

where each displacement vector is controlled by control points 380
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position vector s. The rotational transform φrot rotates each orientation vector (red and orange arrows) about the catheter axis (blue line) according
to the rotational vector θ. The transverse transform φtrans shifts the frame centers in the direction of the rotated orientation vectors according to
transverse displacement vectors du and dv . The spatially transformed frame matrix Fφ is used to sample cross sections from the CCTA lumen
morphology that are compared to the target morphology derived from the OCT lumen. The parameters controlling the spatial transforms are then
updated with gradient descent.

pu and pv . The virtual catheter is initialized to stay close381

to the centerline by setting the two control point vectors as382

zero-vectors of length md each. In contrast to longitudinal383

and rotational registration, we directly optimize the control384

points as the artery wall constrains the cumulative transverse385

displacement of the catheter.386

B. Evaluation387

1) Image data: To evaluate our proposed co-registration388

framework, a dataset consisting of 40 matched OCT and CCTA389

image pairs from five different clinical centers were selected,390

all originating from the Precise Percutaneous Coronary Inter-391

vention Plan (P3) study [29]. As each OCT pullback image392

consisted of 375 frames, the intravascular imaging dataset393

comprised of approximately 15,000 image frames before ex-394

cluding frames with poor image quality. The OCT lumen in395

every frame was manually annotated by trained cardiologists,396

and continuous segments of the OCT pullback with poor397

lumen segmentations due to residual blood or catheter housing398

were manually excluded. Further, as no manual annotations399

were available, the vessel wall borders in every OCT frame400

were segmented using a convolutional neural network through401

a U-net architecture [30]. Details of the network, training,402

and validation can be found in section II-B.5. The lumen and403

vessel wall segmentations were re-sampled to represent a 3D404

image of dimensions (96×96×n) with an in-frame resolution405

of 80 micrometers and an out-of-frame resolution of 0.4 mm406

(sampling every other longitudinal frame). The segmentations407

of the lumen and vessel wall were used to produce the SDFs408

Lpull
OCT and Wpull

OCT using the fast marching method [31]. All409

utilized intravascular pullback sections were manually deemed410

to sufficiently visualize the artery. For the CCTA data, a411

3D surface mesh of the coronary tree for each patient was 412

provided by a previously validated virtual planner [32]. These 413

meshes were produced by a deep learning algorithm and 414

are minimally corrected through human annotators. The 3D 415

models are used to produce high-resolution SDFs of the lumen 416

and vessel wall L3D
CT and W3D

CT with a resolution of 0.25 417

mm along each axis and a shape of of (768 × 768 × 482). 418

The CCTA SDFs were stored as truncated signed distance 419

fields, only containing positive distance values up to 2mm. 420

This was done to enable high-fidelity sampling through virtual 421

catheterization while also reducing the pre-processing cost. 422

The vessel centerlines were semi-automatically obtained by 423

annotating the start and end points of each artery and using 424

them as input to VMTK [33]. 425

2) Co-registration evaluation: In order to evaluate the per- 426

formance of the non-rigid registration, 114 bifurcations were 427

manually marked by human experts in the OCT pullback 428

as well as in the rigid and non-rigid virtual pullback seg- 429

mentations generated from the CCTA data. Bifurcations were 430

defined as the last image frame before a coronary artery 431

splitting into two branches could be seen. The landmark 432

annotations were first annotated before non-rigid registration 433

for the rigidly aligned data belonging to both modalities. 434

Specifically, bifurcations that were common to both modalities 435

had their frame numbers recorded for validation of the non- 436

rigid registration algorithm. The initially annotated bifurca- 437

tions in the CCTA pullback were then re-annotated after non- 438

rigid registration. Longitudinal validation was conducted by 439

comparing the frame number of a bifurcation in the OCT data 440

with the equivalent bifurcation frame number in the virtual 441

pullback before and after non-rigid registration. 442

In order to validate the non-rigid rotational registration, 443
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the manually annotated bifurcation angles for the OCT pull-444

back and the virtual pullback were compared before and445

after rotational registration. As the bifurcation angle between446

bifurcation sections that were not longitudinally matched is447

expected to be uncorrelated, only bifurcations that had a frame448

mismatch below a certain number of frames were considered449

for qualatative analysis of rotational accuracy. The longitudinal450

mismatch threshold was chosen as double the kernel size of451

the Gaussian filter applied to the SDF (six frames).452

3) Implementation details: The rigid longitudinal registra-453

tion parameters were kept the same as the previous study [16].454

For the rigid rotational registration, the number of circumfer-455

ential rays for each frame γ was set to 30. For the non-rigid456

registration, the gradient descent-based optimization procedure457

was implemented in PyTorch with the Adam optimizer [34]458

with the default hyper-parameters. The parameters optimized459

were the relative stretch vector xs, the relative twist vector460

xθ, and the control points associated with the transverse dis-461

placements pd,u, and pd,v . A learning rate of 0.001 was used462

for the non-rigid longitudinal parameters while the non-rigid463

rotational and non-rigid transverse parameters had a learning464

rate of 0.01. This was done to encourage rough longitudinal465

alignment of bifurcations early in the optimization process.466

Each co-registration procedure was run for a minimum of 200467

iterations to ensure convergence. The number of control points468

ms, mθ, and md were chosen to be 30, 20, and 60 respectively,469

to match the frequency of variation for each aspect of catheter470

motion. The relative deformation of the longitudinal control471

points ps was limited to be 0.35 times the inter-point distance.472

Finally, the Gaussian kernel used to smooth the SDFs was473

implemented with a standard deviation of 0.1 and a kernel474

size of three voxels.475

4) Baseline approach: The most commonly used automatic476

co-registration methodologies employed for coronary artery477

registration have been discrete optimization approaches such478

as DTW and DP. In order to evaluate the performance479

of our longitudinal and rotational co-registration framework480

against state-of-the-art discrete approaches, we applied the481

methodology described in our previous work by Karmakar482

et. al [18] on the same dataset. The approach utilizes DTW483

to longitudinally align two coronary imaging modalities and484

DP to rotationally align each frame. We utilized a window485

length of four frames and recorded identical alignment metrics486

for 114 matched bifurcations in the dataset. The non-rigid487

registration algorithm was applied after our rigid longitudinal488

registration step described in section II-A.3.489

5) Vessel wall segmentation model: In this study, our rigid490

rotational registration procedure required approximate vessel491

wall segmentations. As the rotational registration initialization492

was only required to be approximate, the segmentations were493

not required to be high-fidelity or topologically accurate.494

Therefore, a segmentation network was trained to produce495

vessel wall label maps from 2D intravascular OCT frames. We496

utilized a U-net architecture with a resnet50 encoder [35]. Our497

dataset consisted of a mixture between a previously annotated498

dataset [36] consisting of 8 OCT pullbacks and two newly499

annotated OCT pullbacks from the P3 trial dataset, totaling500

1500 2D OCT frames. 105 frames corresponding to one entire501

pullback were held out for validation. For augmentation, we 502

utilized random affine transformations with a rotational range 503

of [0, 180] degrees and a scale range of [0.6, 1.4]. A learning 504

rate of 0.0001 was used in tandem with the Adam optimizer. 505

When applied to the validation set, the model exhibited a 506

precision of 0.85 and a binary dice score of 0.78. 507

III. RESULTS 508

A. Longitudinal registration 509

Longitudinal registration can be qualitatively seen in Fig. 4, 510

where the non-rigid registration process aligned the majority 511

of common bifurcations in both imaging modalities. The 512

improvements over rigid registration are further visualized 513

by a longitudinal mismatch plot (Fig. 5A), revealing that 514

after rigid alignment, the percentage of bifurcations matched 515

within two, four, and six frames are 26.3, 42.1, and 57.9%, 516

respectively, while after non-rigid alignment, these values 517

increase to 60.5, 78.9, and 86.8%. Examining the mismatch 518

distribution through the longitudinal mismatch violin plot in 519

Fig. 6, it can be shown that using rigid registration alone, there 520

exists a significant variability in longitudinal mismatch, with 521

the median mismatch being six frames. However, after non- 522

rigid alignment (Fig. 6), distinct improvement can be observed 523

with a majority of bifurcations experiencing a decrease in 524

longitudinal mismatch, with the median mismatch decreasing 525

to 2 frames. Table I further demonstrates the effect of non- 526

rigid registration, in which the mean frame difference after 527

rigid registration was 7.9 frames (1.58 mm) and subsequently 528

decreased to 3.3 frames (0.66 mm) after non-rigid registration. 529

Statistical significance between the longitudinal non-rigid and 530

rigid registration error was determined by a Wilcoxon signed 531

rank test (p < 0.001). 532

B. Rotational registration 533

Examination of the individual bifurcating frames in Fig. 4 534

for the CCTA (row 1) and OCT (row 2) frames indicates 535

qualitative rotational and transverse alignment between both 536

imaging modalities as evident from the raw images and the 537

overlapped segmentations (row 3). Furthermore, Fig. 7 demon- 538

strates co-registration of calcific inclusions in regions adjacent 539

to properly aligned bifurcations. Rotational registration plots 540

in Fig. 6 quantitatively demonstrate that many bifurcations 541

exhibit high levels of angular misalignment, with a median 542

misalignment of 25.8 degrees. After non-rigid alignment, a 543

significant number of misaligned bifurcations were enhanced 544

in terms of their alignment, bringing the median mismatch 545

down to 8.8 degrees. Examination of the rotational mismatch 546

plot (Fig. 5) quantitatively demonstrates an increase in the 547

percentage of bifurcations aligned up to an angular mismatch 548

of 10, 20, and 30 degrees from % values of 25.3, 40.4, and 549

52.3 to 51.5, 69.7, and 79.8%, respectively. The mean value 550

of the angular mismatch before and after non-rigid alignment 551

is reported in Table I, in which the mean angular mismatch 552

decreases from 36.0 to 28.6 degrees. Statistical significance 553

between the rotational non-rigid and rigid registration error 554

was determined by a Wilcoxon signed rank test (p < 0.001). 555
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Fig. 4. Qualitative results for a single co-registered case. The left plot displays the area along the artery for the non-rigidly registered CCTA
(gray) and the OCT images (gold). The right plot displays the bifurcation zones (Sections A-G) that are marked and labeled for further visualization.
Bifurcation frames from the CT, OCT, and overlapped segmentation maps are presented in the first, second, and third row for qualitative comparison.

C. Comparison with baseline556

A direct comparison of our virtual catheter method with557

state-of-the-art discrete optimization approaches can be seen558

in Table I. Comparing the virtual catheter method to a discrete559

optimization approach for longitudinal registration, it can560

be seen that DTW produces significantly poorer results in561

longitudinal registration, with the longitudinal mismatch of562

11.7 frames (2.34 mm) being higher than rigid longitudinal563

registration average of 7.9 frames. Comparing the virtual564

catheter method to using DP for rotational registration, discrete565

optimization algorithms exhibit poor performance for CT-566

OCT rotational registration (angular mismatch of 77.9 degrees)567

which is higher than the angular mismatch after rigid rotational568

registration alone. Statistical significance between registration569

errors was determined by a Wilcoxon signed rank test (p570

< 0.001).571

TABLE I
ACCURACY OF CO-REGISTRATION APPROACHES APPLIED TO CT-OCT
IMAGE REGISTRATION. AVERAGE ERRORS AND STANDARD DEVIATIONS

IN LONGITUDINAL (FRAMES) AND ROTATIONAL (DEGREE) DIRECTIONS.
ALL APPROACHES IN CT-OCT ARE EVALUATED ON THE SAME DATASET

Method Modalities Subjects
Frame

mismatch
Degree

mismatch
[18] OCT-OCT 9 0.9± 0.8 7.7± 6.7
[37] OCT-OCT 21 5.6± 6.7 1.2± 0.81
[18] OCT-IVUS 7 1.45± 0.7 29.1± 23.2
[15] OCT-IVUS 12 5.0± 6.2 17.8± 21.9
[18] CT-OCT 40 11.7± 12.1 77.9± 61.0

Ours (Rigid) CT-OCT 40 7.9± 7.1 36.0± 31.9
Ours (Non-rigid) CT-OCT 40 3.3± 3.9 28.6± 40.9

IV. DISCUSSION572

The aim of the current study was to develop a semi-573

automatic registration algorithm to align CCTA and intravas-574

cular images given the equivalent vessel morphology and575

a CCTA centerline as guiding inputs. Specifically, we pro-576

pose a novel registration process that involves finding the577

optimal rigid and non-rigid spatial transforms applied to a578

virtual catheter moving through the CCTA image, aligning579

both modalities. Our results indicate that our co-registration580

methodology can align CCTA and OCT frames with a high581

degree of fidelity, as evidenced by the alignment of reference582

landmark annotations (Fig. 4). Further, our results underline583

the critical importance of a non-rigid registration step, with 584

significant enhancement in both longitudinal and rotational 585

alignments as seen when comparing rigid vs. non-rigid align- 586

ments in Table I. We demonstrate that for the majority of 587

bifurcations, our framework is able to improve the longitudinal 588

and rotational alignment of common bifurcations within the 589

CCTA and OCT images (Fig. 6). Lastly, we demonstrate the 590

added value of our approach as compared to state-of-the-art 591

alternatives, with a head-to-head comparison to previously 592

developed discrete optimization alignment algorithms (Table 593

I). This comparison demonstrates that discrete optimization 594

approaches for longitudinal and rotational alignment suffer a 595

significant drop in alignment quality when applied for the 596

task of CT-OCT co-registration. Meanwhile, our approach 597

maintains performance metrics in line with intravascular- 598

intravascular image registration. 599

A. Related work 600

Currently, a majority of CCTA studies that validate their 601

findings with intravascular images have used manual reg- 602

istration based on fiduciary landmarks such as bifurcations 603

or large calcifications [1], [38]–[40]. In comparison, our 604

approach implicitly matches nearby bifurcations using mor- 605

phological representations of the CCTA and OCT lumen. 606

Other approaches that automatically register intravascular-to- 607

intravascular modalities have in the past relied on DTW [15], 608

[18], to maximize longitudinal and rotational alignment of 609

separate intravascular pullbacks. 610

Direct numerical comparison of reported co-registration 611

accuracy across published approaches is inherently difficult as 612

co-registration accuracy is highly dependent on the specific 613

datasets used as well as which modalities are being co- 614

registered. For example, co-registration accuracy is higher for 615

single-modality datasets (OCT-OCT) compared to datasets that 616

include multiple modalities (OCT-IVUS) (Table I). Moreover, 617

this problem is made more difficult as many co-registration 618

studies are conducted on small and private datasets consisting 619

of few patients. In contrast, we leverage a multi-center dataset 620

of 40 patients that is significantly larger than the average 621

dataset size of comparable prior studies. We also directly 622

compare with our previously developed discrete optimization 623

algorithm [18] to control for dataset variability, finding that 624

our prior work produced significantly worse longitudinal and 625
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Fig. 5. Quantitative results comparing rigid and non-rigid co-
registration in longitudinal and rotational directions with varying
degrees of misalignment. Mismatch plots exhibit the % of matched
bifurcations with increasing longitudinal (top) and rotational (bot-
tom) alignment mismatch criteria (x-axis).

Fig. 6. Violin plots comparing rigid and non-rigid co-registration in
longitudinal and rotational directions. horizontal bars mark median
and extremes. First row compares longitudinal bifurcation frame
mismatch before and after non-rigid registration. Second row
compares bifurcation angular mismatch before and after non-rigid
registration. Bifurcations that were longitudinally matched within
six OCT frames after non-rigid registration were plotted in the
second row.

rotational alignment compared to the virtual catheter method626

for the case of CT-OCT registration (Table I). In contrast,627

our developed methodology achieves similar results to studies628

involving intravascular-intravascular registration (Table I).629

B. Methodological adaptations630

The task of co-registering CCTA and OCT images presents631

several unique difficulties for discrete registration algorithms.632

Our framework has several features that were designed to mit-633

igate such challenges. First, the comparatively low resolution 634

of CCTA images induces a circular bias in the already circular 635

lumen segmentations (see Fig. 4), as well as a tendency to miss 636

small bifurcations. Such circularly symmetric regions create 637

zones of longitudinal and rotational ambiguity along the pull- 638

back. Our approach minimzes this effect by formulating the 639

longitudinal and rotational transforms in terms of regularized 640

and smooth B spline deformations. As such, the optimization 641

procedure is mainly guided by the alignment of prominent 642

non-symmetric features such as bifurcations, rather than the 643

circularly symmetric lumen segments. This incentivizes the 644

rotational alignment of all non-bifurcating lumen frames that 645

are in proximity to their matched bifurcations (Fig. 4). 646

Another significant issue faced in previous rotational co- 647

registration algorithms [15], [18] is that lumen bifurcations 648

are only able to contribute to rotational alignment if they exist 649

within the same frame. As such, poor longitudinal alignment of 650

bifurcations was a significant contributing factor to the poor 651

performance of our previously developed DP algorithm for 652

rotational co-registration (Table I). Our current framework, 653

in contrast, minimizes this dependency through the use of 654

a 1D Gaussian smoothing kernel applied longitudinally over 655

the OCT morphology. Longitudinal smoothing allows single- 656

frame bifurcations to appear in adjacent frames and smooths 657

the loss surface such that bifurcations in the different modal- 658

ities can be better aligned (Fig. 4. 659

Lastly, many co-registration methods normalize the position 660

of the lumen by the artery centroid [1], [15], [16], [18]. While 661

such an approach manages to align CCTA and OCT frames 662

with circularly symmetric lumens, it fails to align equivalent 663

frames with bifurcations, due to differing centroids between 664

the modalities. Moreover, centering the image around the 665

lumen centroids can cause the algorithm to mistakenly align 666

bifurcations 180-degrees from the correct orientation. In our 667

current framework, we instead choose to jointly optimize for 668

the transverse displacements of the catheter path frames in ad- 669

dition to the longitudinal and rotational displacements, which 670

allows for the bifurcations in both modalities to be anchored 671

around the OCT catheter location and enables near pixelwise 672

alignment of the lumen (Fig. 4) and plaque constituents such 673

as calcium (Fig. 7). 674

In contrast to approaches that minimize image similarity 675

for co-registration [41], our morphology-based approach is 676

agnostic to the specific intravascular imaging modality pro- 677

vided that luminal segmentations are available. As such, it is 678

likely that our non-rigid algorithm can be readily extended to 679

co-register CCTA and IVUS images, as IVUS can visualize 680

the lumen with similar quality compared to OCT images, 681

albeit with a minor bias towards over-estimating the lumen 682

area [42], [43]. However, the applicability of rigid rotational 683

registration with IVUS-derived vessel wall segmentations is an 684

open question. On one hand, calcified plaque can significantly 685

effect the visualization of the wall through acoustic shadowing 686

[43] which can impact the rotational registration accuracy 687

after rigid registration. On the other hand, rigid rotational 688

registration must only produce an adequate initialization for 689

the non-rigid registration algorithm, which may be insensitive 690

to non-extensive imaging artifacts. Moreover, rigid registration 691



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Fig. 7. Qualitative results comparing calcium annotations between CCTA (first row, obtained by thresholding) and OCT (third row, obtained by
manual annotation) for selected frames with sufficient luminal alignment. Middle row shows superimposed calcium annotations for OCT (red) and
CCTA (green).

can be approximated with the annotation of a single fiduciary692

landmark, meaning that our non-rigid algorithm can nonethe-693

less accelerate registration without relying on IVUS-derived694

vessel wall segmentations.695

C. Limitations696

Though very promising for clinical applications, our de-697

veloped approach has a number of limitations. First, the698

non-rigid spatial transform acting on the virtual catheter is699

found through gradient-based optimization, requiring that the700

rigid initialization brings landmarks sufficiently close such701

that proper matching is ensured. For example, common bi-702

furcations that have a frame mismatch of more than six703

frames (corresponding to the longitudinal smoothing kernel)704

are expected to be uncorrelated in terms of orientation. This705

issue can be mitigated by training a neural network to predict706

the spatial transform needed to align the two modalities. As707

our developed spatial transforms are differentiable, they can708

be integrated into deep learning workflows with relative ease.709

Another limitation is the dependence of non-rigid registration710

on the lumen segmentations. The lumen estimation for bifur-711

cations is expected to be accurate for both modalities and712

as such, ensures good registration accuracy for regions that713

include many such landmarks. However, due to the low reso-714

lution of CCTA as compared to intravascular modalities, the715

lumen estimation tends to be highly circular in vessel sections716

without bifurcations. Accordingly, it is expected that rotational717

co-registration certainty increases with bifurcation proximity718

but decreases in regions that contain highly circular luminal719

profiles. In the future, co-registration accuracy can likely be720

improved by including contextual information relating to the721

vessel wall such as lesion morphology as a supervisory signal722

in the loss function.Furthermore, the use of a pixel-wise loss723

as a surrogate for luminal alignment may not necessarily result724

in optimal alignment of lumen bifurcations. In the future, this725

issue can be mitigated by introducing an orientation loss to726

bias the spatial transform to rotationally align bifurcations.727

Lastly, regularizing the spatial transform and smoothing the728

SDFs can create difficulties in localizing landmarks up to729

frame-wise precision. This can be seen in the area curve 730

in Fig. 4 section B with the slightly mismatched bifurcation 731

in the longitudinal direction. The localization capabilities of 732

the algorithm can be improved by introducing multi-scale 733

deformation steps where finer control point grids can be 734

recursively used as the basis for the spatial transform. 735

V. CONCLUSION 736

We present a semi-automatic algorithm for the co- 737

registration of CCTA and intravascular images. We formulate 738

rigid and non-rigid registration algorithms to reconstruct the 739

3D path of the intravascular catheter, enabling a frame-to- 740

frame comparison between modalities. Specifically, we use 741

automatic differentiation to optimize for the virtual catheter 742

path throughout the CCTA-derived lumen that recapitulates 743

the lumen morphology as found in the intravascular image. 744

Key to our approach is a differentiable spatial transform that 745

models the non-rigid motion of the virtual catheter in the 746

longitudinal, rotational, and transverse directions. Our non- 747

rigid registration algorithm enables the creation of matched 748

multi-modal datasets for various clinical applications and can 749

be used in machine learning-based frameworks. 750
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