Karim Kadry

J +1 857-210-9697

∠ kkadry@mit.edu

\(\) kkadry.github.io

☎ Google Scholar

EDUCATION

Massachusetts Institute of Technology

September 2021 - June 2026

September 2018 - March 2021

PhD in Medical Engineering and Medical Physics (Concentration: Computer Science)

Cambridge, MA, USA

Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland

Master of Science (M.Sc.) in Life Sciences Engineering (Concentration: Biomechanics)

American University in Cairo

September 2013 - June 2018

Dual Bachelor of Science (B.Sc.) in Mechanical Engineering and Physics

Cairo, Egypt

Selected Research Experience

Edelman Lab, MIT

Jun 2020 – Present

PhD Candidate (Research Assistant: Jun 2020 - Sep 2021)

Cambridge, MA

- Generative Modelling of Synthetic Anatomy for Virtual Interventions
 - * Developed latent diffusion model to generate and edit 3D cardiovascular anatomy.
 - * Analyzed anatomic bias inherent to diffusion-based editing methods.
 - * Leveraged **computational topology** to enhance viability of synthetic anatomy for numerical simulations.
 - * Created diffusion guidance algorithms to enforce geometric and structural constraints on generated anatomy.
- Multi-modal Coregistration of Coronary Artery Images
 - * Trained neural network for the multi-label segmentation of coronary morphology from intravascular images.
 - * Developed a spatial transform module to model intravascular catheter motion artifacts.
 - * Created coregistration algorithm for alignment of intravascular and coronary computed tomography images.
- Coronary Digital Twin Reconstruction for Numerical Simulations
 - * Created semi-automatic workflow to reconstruct coronary digital twins from intravascular imaging.
 - * Developed a stress-adaptive mesh refinement module for multi-component artery models.
 - * Conducted biomechanical simulations of patient-specific atherosclerotic arteries to examine the effect of atherosclerotic anatomy on arterial wall stress.

Laboratory of Hemodynamics and Cardiovascular Technology, EPFL

Sep 2018 – Sep 2020

Research Assistant

Lausanne, Switzerland

- Created a lumped parameter model to simulate the hemodynamics of left ventricular dysfunction.
- Analyzed the effect of **ventricular pathology** on valvular and aortic hemodynamics.
- Computationally replicated the hemodynamic profiles for each stage of diastolic dysfunction.

Moore Research Group, Imperial College London

Jul 2019 – Sep 2019

Visiting Research Intern

London, United Kingdom

- Developed a finite element solver of diffusion, advection, and binding for chemokines within the lymph node.
- Coupled the chemokine solver to an agent-based model of dendritic cell chemotaxis to study cellular dynamics.
- Created a generative model of transport networks within the lymph node to study network topology and cellular dynamics.

Bedewy Research Group, University of Pittsburgh

Apr 2017 – Sep 2017

Visiting Research Intern

Pittsburgh, PA

- Developed age-dependent model of both geometry and material properties of the multi-layered skull.
- Conducted biomechanical simulations of neurosurgical pin penetration to study the interaction between axial penetration depth, transverse force stability, and age.

Calico Life Sciences

May 2025 – Aug 2025

Machine Learning Intern-Protein Design

San Francisco, CA

- Developed diffusion guidance methods that enforce physio-chemical constraints on protein generative models
- Created diffusion guidance methods that enforce multi-scale geometric constraints on protein generative models

General Electric Healthcare

May 2024 – August 2024

Research Scientist Intern-Medical Imaging

San Ramon, CA

- Developed patch-based latent diffusion model for 3D MRI images of knee joints.
- Created diffusion model conditioning mechanisms for **in-painting pathological features** to augment segmentation model training.

Novostia

January 2020 – July 2020

Neuchâtel, Switzerland

 $Engineering\ Intern\text{-}Medical\ Device\ Design$

- Synthesized R&D documentation for a novel trileaflet mechanical heart valve.
- Co-supervised in-vitro/in-silico development activities including manufacturing, characterization, testing, and simulation.

LEAD-AUTHOR PUBLICATIONS

Note: Equal contributions indicated by †

- P1 Kadry, K., et al. CardioComposer: Flexible and Compositional Anatomical Structure Generation with Disentangled Geometric Guidance. Arxiv submission
- P2 Kadry, K., et al. A Diffusion Model for Simulation Ready Coronary Anatomy with Morpho-skeletal Control. European Conference on Computer Vision (ECCV)
- P3 Kadry, K., et al. Probing the Limits and Capabilities of Diffusion Models for the Anatomic Editing of Digital Twins. npj Digital Medicine
- P4 Kadry, K., et al. Morphology-based non-rigid registration of coronary computed tomography and intravascular images through virtual catheter path optimization. IEEE Transactions in Medical Imaging
- P5 Kadry, K., et al. A platform for high-fidelity patient-specific structural modelling of atherosclerotic arteries: from intravascular imaging to three-dimensional stress distributions. Journal of the Royal Society Interface
- P6 Straughn, R†, Kadry, K.†, et al. Fully Automated Construction of Three-dimensional Finite Element Simulations from Optical Coherence Tomography. Computers in Biology and Medicine
- P7 Sogbadji, J†, Kadry, K.†, et al. Impact of lesion preparation-induced calcified plaque defects in vascular intervention for atherosclerotic disease: in silico assessment. Biomechanics and Modeling in Mechanobiology
- P8 Kadry, K., et al. Biomechanics of diastolic dysfunction: a one-dimensional computational modeling approach. American Journal of Physiology-Heart and Circulatory Physiology

Mentorship Experience

Currently mentoring the following students:

- 1. Generative Augmentation of Cardiac Simulation Datasets to Train Surrogate Physics Models: Abdallah Abdelwahed
- 2. Differentiable Mechanics Simulators for Estimation of Coronary Artery Material Properties from Interventional Imaging: Yasmin Tawfik

Mentored the following masters students:

- 1. Anatomical Structure Generation through Geometric Guidance: Mohammed AlKhudhayri
- 2. Representing Branched Vascular Anatomy with Neural Fields: Alexandra Flores
- 3. Neural Field Representations for Anatomic Diffusion Models: Elias Salameh
- 4. Graph Neural Networks to Predict Coronary Angioplasty in Coronary Arteries: Mert Ertugrul
- 5. Keypoint-guided Registration of Coronary Intravascular Images: Mariia Eremina
- 6. Contrastive Learning with Pre and Post Intervention Coronary Imaging: Naravich Chutisilp
- 7. Deep-learning Assisted Analysis of Coronary Intravascular Lithotripsy: Shreya Gupta
- 8. Biomechanics of Vessel Curvature and Calcium in Coronary Arteries: Kehan Pan
- 9. Multimodal Data Fusion for Applications in Coronary Image Segmentation: Sohee Ahn
- 10. Impact of lesion preparation-induced calcium fractures in vascular intervention for atherosclerotic disease: in silico assessment: Jonas Sogbadji
- 11. Fully Automated Construction of Three-dimensional Finite Element Simulations from Optical Coherence Tomography: Ross Straughn

Awards

Carl E. Nielsen, Jr. Family Fund Award, MIT

2025

Termeer Fellowship of Medical Engineering and Science, MIT

2023

Undergraduate Scholarship for Outstanding Academic Achievement, AUC

2013-2018

SKILLS

Deep Learning: Diffusion Models, Autoencoders, Neural Fields, Image Registration, Image Segmentation

Modelling & Simulation: Computational Geometry, Finite Element Analysis, Continuum Mechanics

Programming: Python, Linux, SLURM, Github, Docker, AWS, SSH