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A B S T R A C T

Despite recent advances in diagnosis and treatment, atherosclerotic coronary artery diseases remain a leading
cause of death worldwide. Various imaging modalities and metrics can detect lesions and predict patients
at risk; however, identifying unstable lesions is still difficult. Current techniques cannot fully capture the
complex morphology-modulated mechanical responses that affect plaque stability, leading to catastrophic
failure and mute the benefit of device and drug interventions. Finite Element (FE) simulations utilizing
intravascular imaging OCT (Optical Coherence Tomography) are effective in defining physiological stress
distributions. However, creating 3D FE simulations of coronary arteries from OCT images is challenging to
fully automate given OCT frame sparsity, limited material contrast, and restricted penetration depth. To address
such limitations, we developed an algorithmic approach to automatically produce 3D FE-ready digital twins
from labeled OCT images. The 3D models are anatomically faithful and recapitulate mechanically relevant
tissue lesion components, automatically producing morphologies structurally similar to manually constructed
models whilst including more minute details. A mesh convergence study highlighted the ability to reach stress
and strain convergence with average errors of just 5.9% and 1.6% respectively in comparison to FE models
with approximately twice the number of elements in areas of refinement. Such an automated procedure will
enable analysis of large clinical cohorts at a previously unattainable scale and opens the possibility for in-silico
methods for patient specific diagnoses and treatment planning for coronary artery disease.
1. Introduction

Cardiovascular diseases are the leading cause of death around the
world [1]. Atherosclerotic lesion stability is dependent on the balance
of plaque structural stress (PSS) and material properties and compo-
sition, where plaque rupture is instigated once PSS exceeds material
strength [2]. Various studies have highlighted that easily determinable
morphological markers such as the size of lipid core, lipid arc an-
gle, fibrous cap thickness and lipid and calcium content can improve
identification of unstable lesions [3–5]. Despite suffering from reduced
predictive power, current clinical metrics extracted from OCT imag-
ing are widely adopted given their ease in extracting morphological
features. However, quantitative metrics based merely on morphology
alone often misidentify the risk of plaque rupture [6–8]. In contrast,
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functional metrics informed by computational modeling of coronary
micro-mechanics are more effective in identifying unstable lesions than
those informed by morphology alone [8].

Patient-specific computational modeling by Finite Element Analysis
(FEA) is a powerful technique to delineating the micromechanics of
coronary artery, enabling the determinations of the aberrant mechan-
ical stress distributions [9]. However, many studies are limited to
2D geometries which facilitates ease of analysis but restricts accurate
modeling [9–14]. 2D FEA simulations tend to overestimate stresses
within plaques [13,14], with some studies unrealistically estimating
plaque stress to be as high as 1000 kPa [8], whilst underestimating the
stress concentrations produced by small calcifications [15]. In contrast,
3D simulations are more accurate than 2D approaches but require
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extensive effort and laborious annotation time to create digital models,
which limits scalability and repeatability.

Automatic segmentation of the atherosclerotic constituents is chal-
lenging in optical coherence tomography OCT images which suffer
from increasing signal attenuation, resulting in limited penetration
depth. Intravascular ultrasound (IVUS) better discerns arterial borders
prompting hybrid modality approaches Guo et al. [16] combining
the high-resolution tissue components of OCT images with anatomical
borders obtained from IVUS [16]. However, clinical imaging is rarely
performed with both IVUS and OCT, limiting the utility and feasibility
of such an approach. Overcoming the shortfall of OCT imaging, Olender
et al. [17] fit a 3D anisotropic linear-elastic mesh to visible regions of
the lumen and outer vessels, enabling fully automated delineation of
the inner and outer borders. Neural network approaches by Athanasiou
et al. [18] and others allowed for automated labeling of raw OCT into
six categories: calcium, lipid tissue, fibrous tissue, mixed tissue and
non-pathological tissue/ media [17,19].

Even with effective methods to accurately segment the various
tissues in OCT images, the conversion of labeled frames into digital twin
computational models present several difficulties. Unlike many other
imaging modalities, OCT suffers from frame sparsity, often requiring
manual 3D reconstruction followed by manual meshing [20]. A fully
automated pipeline that generates 3D FEA-ready digital twins from
OCT pullbacks has not yet been created. Kadry et al. [21] automated
much of the process, with specialized techniques for meshing the 3D
geometry automatically; however, the process still required extensive
manual effort to create the 3D CAD model. An automated framework
would significantly reduce the time taken to create 3D models with
complex morphology by avoiding previously necessary manual extrud-
ing techniques to loft the material labels in each frame [16,21–23],
enabling structural simulations to be performed at an unprecedented
scale, fully-capturing the patient-specific mechanical response from
complex morphologies [21,24,25]. We present a pipeline to automat-
ically create 3D FE models that interpolates labeled OCT frames into
a 3D multi-label voxelmap, meshes the 3D reconstruction with lo-
calized mesh refinement, and prescribes boundary conditions to the
FE model, significantly accelerating the previously manual process.
The framework we have developed presents a robust and highly re-
peatable procedure for transforming labeled OCT frames, with their
inherent complex morphology, into three-dimensional reconstructions
of coronary lesions through a series of processing steps that ensure
a physiological and representative depiction of a patient’s anatomy.
This is followed by an optimized meshing technique that generates
finite element models that generates physiological and consistent stress
distributions. Our pipeline represents a significant advancement as it
enables the automatic generation of digital twins for patients with
CAD using raw intravascular images. This work allows us to calculate
3D structural stress within different lesion constituents, a capability
that was not possible before. This opens new possibilities for studying
lesion progression, predicting adverse clinical events, and aiding in
therapy planning. By harnessing the power of digital twins, we can
provide a more comprehensive understanding of CAD and improve
patient-specific treatment strategies.

2. Materials and methods

Our framework (Fig. 1) took as input a 3D voxelgrid corresponding
to a set of labeled OCT frames. Additional processing was performed on
these segmentations before the frames were interpolated, creating an
isotropic 3D voxelgrid of the coronary artery, subsequently all material
properties and boundary conditions were prescribed in an ABAQUS
finite element simulation file. All software utilized were open-source
and coded in Python and Octave running as a single program in a Linux
environment.

2.1. Tissue label generation

OCT images were acquired from patients who underwent invasive
angiography and had one or more clinically identified significant
2

stenoses. OCT images were collected according to clinical standards and
approved by the Ethics Committee of the institution with all patients
providing informed consent for the OCT images to be used for re-
search purposes Olender et al. [17],Regar et al. [26]. The investigators
used a C7-XR FD-OCT optical frequency domain intravascular imaging
system alongside the DragonFly catheter (St. Jude Medical, Lightlab
Imaging Inc., Westford, MA, USA). Motorized, automatic pullback was
performed at 0.5 mm/s, with 20 μm frame resolution and 400 μm
spacing. A predeveloped CNN with a validation accuracy of 96.05%,
developed by Athanasiou et al. [18] and trained on 700 OCT images
from 28 patients, was utilized to generate the material labels for the
four investigated OCT pullbacks. The CNN was trained on 480 K
augmented patches from 22 of the patients, whilst the patches from
the remaining 6 patients were reserved as validation for the CNN.
The patched-based architecture begins with an input layer tailored for
32 𝑥 32 pixel patches. This precedes an assembly of convolutional,
batch normalization, and ReLU activation layers, sequentially followed
by max pooling layers; each convolutional filters being 3 𝑥 3 in size,
increasing from 8 to 128 across each repetition. The last iteration
utilizes an average pooling layer and is then proceeded by a fully
connected layer, dropout layer, another fully connected layer, softmax
layer and the ultimate classification layer for the output prediction.
Through experimentation, 45 layers was deemed to be most optimal.
The model is updated using Stochastic Gradient Descent and was found
to be optimal to reduce training time. Labels were produced by medical
experts per Athanasiou et al. [18] generating calcium, lipid, fibrous
and mixed tissue domains. The CNN-labels were processed so that a
thickness of 200 μm separated the lipid from the lumen to avoid rare
non-physiological cases of the lumen direct contact with lipid Kadry
et al. [21].

2.2. Pre-processing

The platform initially requires the labels to undergo a series of pre-
processing steps, to ease the creation of the 3D finite element model and
to rectify any CNN generated labels that are not anatomical. Firstly,
we simplified the platform to only consider calcium, lipid and pool
remaining fibrous and mixed tissue into one group. The lumen was pre-
scribed its own unique label by isolating the second largest connected
component of the image (with the largest connected component being
the background). Specifying areas of the lumen allows for loads to be
prescribed more easily to the inner surface of the artery as explained
in more detail in Section 2.6. Small tissue components less than 150
pixels (0.06 mm2) in size were filtered out. Calcium components were
excluded from the filtration step given their small size and sparsity.
Occasionally, the CNN can produce walls that are non-anatomically
thin, therefore such regions were thickened so that the entire arterial
tissue has a minimum thickness of 500 μm, the lower bound of what
is anatomical [27]; thickening the walls further would reduce stress
concentration [28], reducing the apparent severity of the lesion.

2.3. Frame interpolation

Unlike Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI), OCT suffers from frame sparsity as a result of the in-frame
resolution being lower than the out-of-frame resolution. Due to the
large gaps between frames, it is difficult to create a volumetric mesh
before creating an isotropic pixel resolution. Our software framework
first interpolated the CNN labeled OCT frames using a signed distance
function (SDF) based algorithm [29]. The SDF describes the function
value of some point, P, to the closest point of the implicit surface, S,
generating a distance map between two labels in the frames, allowing
for linear interpolation to deduce virtual labels within the physical
space of the two labeled frames. The points on the surface satisfy the
following relationship [30]:

3
𝑆 = {𝑥 ∈ 𝑅 |𝑓 (𝑥) = 0} (1)
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Fig. 1. The automated framework pipeline. A CNN developed by Olender et al. [17] segments the raw OCT images into material labels corresponding to several tissue classes.
Image processing steps modify the CNN labeled OCT frames to create anatomical geometry, followed by the signed distance function (SDF) based interpolation procedure. Healthy
artery tissue, lipid and calcium are represented by the dark gray, blue, and light gray colors.. Refinement layers (gold and green) are then created to allow for extra refinement
at sites of expected high stress. The golden layers are refined the most followed by the layer in green. Meshing steps utilizing open-source software create the volumetric mesh
with the applied boundary conditions and material properties. The FE ABAQUS file is then ready to be used in a simulation.
The values of 𝑓 (𝑥) refer to the signed distances.
Each material component was interpolated individually to the corre-

sponding component in the adjacent frame. In cases where a component
is absent from one frame, an artificial label (one voxel in size), was
added to the frame red lacking the component. This artificial label is
added at the same 𝑥 and 𝑦 component as the centroid of the correspond-
ing component where it is present in the previous frame. Eachlabel was
expanded to fill any unlabeled areas after the interpolation procedure.
As the labels are also expanded radially, the arterial cross-section was
unphysiological. Therefore, a mask of the cross-section of the artery
was interpolated in the same SDF procedure and then used to crop
the expanded labels to a physiological cross-sectional area through
a Boolean operation. The result of the process is an isotropic 3D
reconstruction of the OCT image with smooth transitions between each
interpolated frame (see Fig. S1).

2.4. Post-processing

The mesh was locally refined near plaque components to allow for
the efficient allocation of elements to the computational model, thereby
budgeting the modeling cost. The vast majority of stress concentrations
were expected to form in the vicinity of the atherosclerotic tissue com-
ponents due to varying material stiffness or the inner wall of the artery
based on the mechanics of pressurized cylinders. [31,32]. Therefore,
higher levels of mesh refinement were required in the surrounding
arterial tissue to reach stress convergence. Two additional labels were
thus constructed — an inner refinement layer applied to immediately
3

surround the calcium, lipid and lumen, and an additional outer re-
finement layer surrounding the inner refinement layer to provide finer
spatial control over the mesh generation (Fig. 1:Image Processing).

2.5. Meshing

An open-source mesh generating API, Iso2Mesh (ver 1.9.6), was
utilized to create the initial meshes leveraging the CGAL (Compu-
tational Geometry Algorithms Library) algorithm (ver 5.0.2) due to
its ability to mesh labelmaps with more than two labels intersecting
(Fig. 1:Meshing) [33,34]. A global mesh size was prescribed to all labels
aside from the refinement layers with the inner layer having the finest
mesh quality assigned. The resulting mesh consisted of both surface
and volumetric elements. GMSH, another open-source meshing API,
removed any 2D, surface elements so that only 3D, volumetric elements
remained. Linear, C3D4 elements were then optionally converted to
second order, C3D10 elements [35]. Additionally, the volumetric mesh
was optimized using the Netgen algorithm to improve mesh quality
and avoid associated mesh errors during FE simulation [36]. The final
mesh was then converted to an inp file, a native ABAQUS finite element
input for structural simulations. When creating the inp file, the C3D4
or C3D10 elements were converted to their respective hybrid equiva-
lents (C3D4H and C3D10H). Information regarding the connectivity of
nodes associated with the lumen was extracted (discussed further in
Section 2.6), and subsequently the lumen was removed from the mesh.
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Table 1
Hyperelastic constants used in the FE model for healthy artery and lipid tissue.

Material C10 [kPa] C01 [kPa] C20 [kPa] C11 [kPa] C30 [kPa] D

Healthy artery 127.9 0 0 0 0 0.096
Lipid 1.6 0 9.3 0 11 0

2.6. Boundary conditions

Inner arterial wall nodes were defined by identifying nodes that
were shared by any of the arterial components and lumen. Boundary
conditions are applied by editing the inp file (Fig. 1:Meshing). A pres-
sure of 15 kPa was then applied to elements of the inner arterial wall to
represent the physiological blood pressure of coronary arteries [21,37].
Nodal boundary conditions were applied on both ends of the coronary
artery to prevent displacement in all directions. Nodes associated with
the end caps were identified by finding nodes within a specific distance
from the maximum and minimum z-coordinates of each end cap.

2.7. Material properties

Mimicking the isotropic model used by Kadry et al. [21], soft tissues
were modeled as hyperelastic materials. A third-order polynomial strain
energy function is described as:

𝜓 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3)

+𝐶30(𝐼1 − 3)3 + 1
𝐷
(𝐽 − 1)2

(2)

Where the constants Cij and D refer to the distortional and compres-
sional response respectively. Constants 𝐼1, 𝐼2 and 𝐼3 are the invari-
ants of the right Cauchy–Green deformation tensor. The values for
these constants ( Table 1) were produced experimentally from ex-vivo
mechanical experiments [38,39].

Calcium, simply assumed to be a linear elastic material, was mod-
eled using Kadry et al. [21]:

𝜎 = 𝐸𝜖 (3)

Where E refers to the young’s modulus with a value of 184 MPa [40]
based on experimental data with a Poisson’s ratio of 0.495, as assumed
by Kadry et al. [21].

2.8. FEA convergence experiment

A region of interest, 10 mm in length, consisting of 25 physical OCT
frames was selected for a mesh convergence experiment. A total of 8
separate FE models of this region of interest with various degrees of
mesh refinement for the inner, most refined layer were investigated to
test the capability of the framework in converging for peak strain and
peak stress. Iso2Mesh generates elements of varying size by defining the
maximum pixel volume size rather than the length of each element. The
largest and smallest volume size was set at 2.83 and 1.72 cubic voxels
(with a voxel resolution of 20 μm), resulting in a near quadrupling of
the number of refined elements from 375,000 elements to 1,374,000
elements. The global number of elements ranged from 1,052,000 to
2,257,000 for the least and most refined models respectively. A total
of 12 2D OCT frames from this region of interest were selected for
peak stress analysis. These frames were 2.8 mm away from the end
caps of the artery to avoid any effects that the displacement boundary
conditions may have on the final results. The selected frames (Fig. 2)
contained varied, complex geometry consisting of healthy arterial tis-
sue, lipid and calcium. The refinement layer in the least refined mesh
contained 3.75 × 105 elements, whilst the most refined mesh contained
1.37 × 106 elements.
4

Fig. 2. Illustration of the frames that were investigated for the mesh convergence
study. Frames shown in (a) consist of complex geometry that includes large contents
of lipid (blue) and calcium (light gray) embedded within arterial tissue (dark gray).
Region highlighted shows the material distribution (b) and tissue stress (c). The arterial
stress is significantly concentrated at the region of the thinnest fibrous cap. Stress of
calcium was excluded to highlight arterial stress distribution. Peak stress is highlighted
by the (*) marker.

3. Results

3.1. 3D reconstruction

It can visually be confirmed that the automatically generated 3D re-
construction in this paper produces an anatomical morphology (Fig. 3).
When visually comparing the reconstruction produced by [21], the
larger morphological features are similar; however, the fully-automated
method included more minute details such as smaller islands of calci-
fication. Another noticeable difference is that the automated method
tended to connect material constituents more frequently in the space
between the labeled OCT frames than the semi-automated method.

3.2. FEA convergence

Convergence is typically defined based on the percentage error of a
measured value with the doubling of the number of elements. Hence,
a comparison was made between the most refined mesh (1.37 × 106

elements) and a mesh with approximately half the number of elements
(6.79 × 105 elements). The degree of strain and stress error is a measure
of the error with respect to the most refined mesh. Comparing these two
meshes with varying degrees of refinement there was an average strain
error of 1.61% for each frame investigated and the error remained
below 10% for each individual frame. The average percentage error
of the stress was 5.9% with 9/12 frames having an error below 10%
and the remaining 3 frames below 15% error.

3.3. Stress distribution

Several regions of interest were extracted from four separate OCT
pullbacks to demonstrate the utility of developed framework to cre-
ate 3D FEA-ready cases (Fig. 4). We observed that peak stress was
distributed near areas of high lipid content (Fig. 4(d), (g) and (h)),
often located at lipid-calcium interfaces (Fig. 4(b), (e), and (g)) and
were sharpest near calcium segments acting as localized stress inducers
(Fig. 4(b), (c), (e) and (g)). Small calcifications induced localized areas
of high stress (Fig. 4(a), (c) and (e)).
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Fig. 3. Comparison of the generated 3D geometry created by the semi-automated CAD based method employed by Kadry et al. [21] (left) vs the newly proposed method in this
paper (right). The semi-automated method, that relied on manual lofting using CAD software, produces a model of similar morphology for healthy arterial tissue (dark gray),
lipid (blue) and calcium (light gray). A noticeable difference is that the automated method includes some extra smaller, but mechanically significant calcifications (black arrows),
otherwise unfeasible to include in the manual process.
Fig. 4. Cross-sectional view of eight different sections from four separate OCT pullbacks, each exhibiting a distinct morphology, resulting in a variety of stress responses. The peak
stress is represented by a (*) marker.
In many of these cases, stress concentrations occurred at the inner
surface of the arterial tissue (Fig. 4(a), (c), (d), (f), (g) and (h)), mainly
due to large deposits of lipid nearby. This phenomenon is exemplified
in Fig. 5 wherein (a) and (b) highlight a region of high lipid content
with a small fibrous cap thickness, resulting in a region of high surface
stress. Calcium is also capable of inducing arterial stress concentrations
(Fig. 5(c) and (d)) where calcification in direct contract with the lumen,
a calcified nodule, induces a sharp increase and highly localized region
of stress concentration.

4. Discussion

OCT-based structural simulations are a useful tool in capturing
patient-specific risk of atherosclerotic events. However, manually gen-
erating simulation ready models is cumbersome, limiting their util-
ity and application. Such preliminary hurdles are inevitable due to
complexity of generating 3D reconstructions from frames, difficulties
with meshing the complex 3D geometry and convergence issues. A
fully automated pipeline will significantly reduce the time and effort
necessary to create structural models from OCT images. We, herein,
introduce the first fully automated process to create 3D structural
finite element models from OCT imaging by creating a pipeline that
5

interpolates CNN-generated labeled OCT frames, meshes the generated
3D reconstructions and prescribes the necessary material properties
and boundary conditions. The introduced framework enables an un-
precedented level of scalability in generating structural simulations of
atherosclerosis, in a highly-repeatable manner. Paired with fully auto-
mated segmentation techniques [17], the framework enables automatic
calculation of mechanically informed metrics from an OCT imaging
pullback, significantly boosting the clinical translatability of structural
simulations to determine patient-specific risk.

Our framework creates 3D reconstructions of arteries from sparse
OCT images, producing similar results to labor-intensive methods,
whilst incorporating minute details such as small calcifications. Al-
though automating much of the process, the lofting process of Kadry
et al. [21] could take up to 5 days depending on the complexity of
the micromorphology of the lesion. The meshing process of this prior
method involved timely and computationally expensive boolean oper-
ations to remove overlapping volumes of the 3D CAD model, taking up
to an hour to complete. Meanwhile, with our newly proposed method,
the creation of the 3D FEA model from labeled data consistently
required less than 20 min for the same investigated OCT pullback.
Interpolation will inevitably lead to morphologies more elaborate and
different from manual attempts, yet the automated method closely
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Fig. 5. View of the inner vessel wall surface of healthy arterial tissue with embedded
lipid and calcium volumes. The positioning of the lipid and calcium volumes signifi-
cantly impacts the surface stress of the artery. The large deposit of lipid that resides
near the surface of the lumen (a), induces a region of higher stress concentration on
the arterial surface (b). Although the volume of clarifications may be small in region
(c), the stress inducing effects of a stiff localized deposit are significant (d).

matches an anatomical human-made method (see Fig. 3) demonstrating
the reliability of the technique. Nevertheless, it has been shown that
a reduction in the number of axial slices has minimal impact on the
result on the general 3D stress distributions from FE simulations [13].
This may suggest that the method of 3D interpolation, provided that it
is anatomical, may not significantly impact the stress distribution.

Although not based on OCT imaging, Warren et al. [41] produced
a fully automated procedure to create FE files based on IVUS imaging.
Unassigned elements were initially created and then each element was
assigned a material based on the closest label in a physical IVUS frame.
In their technique, only surface meshes of the profiles of the lumen
and outer arterial wall were generated, ignoring the surface of each
individual material component; hence, the elements were not generated
to represent the complex material morphology, yielding sharp and
irregular interfaces between the various materials, likely to induce
unphysiological stress concentrations. In contrast, the CGAL algorithm
that we employ creates smooth surface meshes around each individual
material constituent (see Fig. 1), faithfully reproducing the morphology
of the constituent materials of the artery. Peak arterial wall stress is
often used as a quantitative measure of lesion stability Doradla et al.
[8],Guo et al. [42], elevating this metric in importance and amplifying
any inaccuracies, limiting clinical utility. As the refinement layers in
the method we now present are applied around areas of expected high
stress nonphysiologic stress singularities and exaggerated instability are
avoided.

There are a number of limitations with the current approach. We
have not accounted for arterial curvature which may have a minor
impact on the mechanical response of the tissue. However, this can be
rectified by including centerline or catheter path information acquired
from supplementary modalities such as Coronary Computed Tomogra-
phy Angiography (CCTA) [43]. Incorporating the anatomical curvature
is more critical in fluid–structure interaction (FSI) models due to its
impact on disturbing blood flow, leading to low and oscillatory wall
shear stress [41,44]. Our approach can incorporate lumen segmentation
to create FSI models that can calculate both the mechanical and fluidic
response of the lesion. Although PSS is likely to be a better predictor of
short term mechanical stability, fluid dynamics, and wall shear stress
(WSS) in particular, are believed to be mechanical cues for long term
remodeling [45,46]. Utilizing both PSS and WSS will enable a tool to
predict both short-term and long-term prognosis of patients.
6

Although the scope of this paper does not focus on techniques used
to segment the OCT frames, the results of the structural simulations
are highly dependent on the accuracy of the segmentation technique.
Hence, incorporating state of the art labeling, image reconstruction and
post-processing techniques will ultimately provide a greater represen-
tation of the mechanical state of specific lesions [20,43,47–50]. Our
method utilized CNN based segmentations to create labeled data, the
accuracy of which is contingent on dataset size and variety of both the
OCT imaging systems and that of the diseased and healthy coronary
arteries represented within the dataset [19]. Nonetheless, the scope of
this paper focuses on utilizes utilizing labeled frames developed in any
method and owing to the modular nature of the pipeline, the labeling
method can conveniently be improved and adjusted to ultimately yield
structural simulations of higher fidelity.

Unstable lesions are often identified when focusing on peak values
of stress and strain in finite element analyses, but such studies rarely
discuss and verify convergence of peak values. In contrast, our model
produced converged results for strain even in complex lesions and
with minimal mesh refinement. Although, the error of stress values
was higher than strain values, the error was consistently below 15%
with a near doubling of the refined layer. Moreover, the three cases
exhibiting more than 10% error were all clinically less significant
as their frames had the smallest stress peaks. Stress peaks for the
majority of these cases occurred at various locations for each level
of refinement, inevitably contributing to the large fluctuations in the
recorded stress values. On the contrary, slices with more distinct, larger
stress concentrations had stress peaks persistently at the same location
for each level of refinement. Achieving mesh refinement demands the
utilization of regional mesh refinement, especially for materials with
highly varying mechanical responses, without so, determining lesion
stability based on peak stress values will be unreliable. Rather than
uniform element sizing in each refinement layer, a more efficient
allocation of elements would increase element sizes gradually from
high-stress areas. Additionally, a stress-adaptive proceduer could aid
in reaching convergence by seeding extra elements at high-stress sites
after an initial simulation.

Including residual stress enables a more equal distribution of stresses
throughout the wall of the arterial layers and therefore neglecting this
effect in our framework may slightly misrepresent the physiological
state of the artery [51]. Computational modeling of residual stress for
in-vivo based models is actively being researched and implementation
into such a model may provide more accurate determination of stress
distributions [51–53].

Accumulating evidence suggests that purely morphological assess-
ments of intravascular imaging such as OCT have limited predictive
capability in determining lesion stability [8,42]. Fully automated struc-
tural analysis allow for mechanically informed lesion stability analysis
in a clinical environment, enabling improved therapeutic planning.
Virtual interventions can be performed to optimize device design and
intravascular placement. Automated methods can lead the way for
expansive trials across permutations and combinations of lesions and
interventions and allow for mechanically informed metrics to assess
plaque stability to emerge, augmenting current clinical guidelines.

5. Conclusion

We present one of the first algorithmic approaches to automati-
cally construct 3D finite element models from raw OCT imagery. Our
approach recapitulates the 3D and multi-material nature of atheroscle-
rosis, and predicts the mechanical response of lesions with a high
degree of fidelity. The time required to create such patient-specific
physics simulations have been reduced to a matter of minutes, signifi-
cantly improving the ability to perform large scale research studies in
addition to improving the clinical viability of the research field.
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