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ABSTRACT

Generative models of 3D cardiovascular anatomy can synthesize informative struc-
tures for clinical research and medical device evaluation, but face a trade-off
between geometric controllability and realism. We propose CardioComposer: a
programmable, inference-time framework for generating multi-class anatomical
label maps based on interpretable ellipsoidal primitives. These primitives represent
geometric attributes such as the size, shape, and position of discrete substructures.
We specifically develop differentiable measurement functions based on voxel-wise
geometric moments, enabling loss-based gradient guidance during diffusion model
sampling. We demonstrate that these losses can constrain individual geometric
attributes in a disentangled manner and provide compositional control over multiple
substructures. Finally, we show that our method is compatible with a wide array
of anatomical systems containing non-convex substructures, spanning cardiac,
vascular, and skeletal organs.

1 INTRODUCTION

Three-dimensional segmentations of human anatomy power a variety of physics-based simulation
platforms. For example, virtual cohorts of anatomy can be used for virtual clinical trials to evaluate
and optimize novel medical devices and imaging systems Sarrami-Foroushani et al. (2021); Viceconti
et al. (2021); Abadi et al. (2020). Additionally, biophysical simulations can generate insights in the
context of both computational physiology research Niederer et al. (2020); Straughan et al. (2023);
Roney et al. (2020) and surgical training Yu et al. (2024). Anatomical segmentations can also be
used to augment machine-learning workflows through the formation of synthetic images, either
through imaging simulators Gopalakrishnan et al. (2024); Gopalakrishnan & Golland (2022), domain
randomization Dey et al. (2025); Billot et al. (2023), or generative models Fernandez et al. (2022;
2024).

Generative models of anatomy trained on patient-specific data offers advantages for simulation use-
cases. For example, conditional generation can augment computational trial cohorts with anatomical
variants that are both novel and rare Kong et al. (2024b). Moreover, generative editing methods,
such as inpainting, can precisely modify existing patient geometries to create anatomically plausible
variations Kadry et al. (2024; 2025). These “digital siblings” can be used with biophysical simulators
to model counterfactual scenarios that elucidate the relationship between anatomical form and
function.

However, unlike generative modeling of 3D shapes for artistic purposes, generating anatomical
models for biophysical simulations presents several unique challenges. The first challenge concerns
scale-critical features, in which minor geometric variations on the order of millimeters can cause
major fluctuations in physiological behavior Fabris et al. (2022); Sacco et al. (2018); Moore & Dasi
(2015). Second, anatomical structure exerts attribute-specific effects, in which geometric features
such as size and position play different roles in determining biophysical outcomes Kadry et al. (2021).
Third, the geometry of multiple substructures interact in a compositional manner Kadry et al. (2021);
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Figure 1: We present a guidance framework to constrain diffusion models of multi-label
anatomical segmentations based on simple geometric features. Such features include size, shape,
and position, and can be represented as ellipsoids in 3D space (panel A). Our inference-time approach
enables generation based on independent geometric features (panels B-D), and supports multi-
component compositional generation (panels E-G). Gray and blue voxels represent components
that are unconstrained and constrained, respectively. Purple ellipsoids indicate a strong overlap
between target and sample ellipsoids .

Bhalodia et al. (2018); Kong et al. (2024a), where simulated outcomes are influenced by the collective
arrangement of various substructures. Lastly, to interface with clinicians and device engineers, such
generative models should be controllable via primitives that are interpretable and physiologically
relevant.

To address these design requirements, we present CardioComposer, an energy-based guidance
framework for controlling unconditional diffusion models with geometric attributes regarding size,
shape, and position. We visually represent these constraints via interpretable ellipsoidal primitives
(Figure 1 A). Our inference-time framework can independently control individual attributes such
as size or position (Figure 1 B-D), and compose geometric constraints for an arbitrary number of
anatomical components or substructures (Figure 1 E-G). Our key insight is that unconditional diffusion
models of multi-class anatomy can be constrained in a compositional manner by simple gradients
derived from geometric loss functions applied individually to each substructure. We demonstrate this
method on multi-tissue cardiovascular segmentations that exhibit a wide array of substructures such
as star-shaped chambers and tubular vasculature. Our framework advances the state of the art in the
following ways:

• Differentiable Geometry for Anatomical Characterization: We introduce a set of differ-
entiable geometric measurement functions that compute physiologically relevant anatomical
features from a substructure label map. We specifically measure voxel-wise geometric
moments compute size via zeroth-order moments, position via first-order moments, and
shape via scale-normalized second-order moments.

• Inference-time Guidance to Control Substructure Geometry: We demonstrate that simple
gradients derived from differentiable geometric loss functions can guide unconditional latent
diffusion models of discretized multi-class label maps. This enables independent or joint
control of substructure attributes without retraining, where substructures consist of one
tissue class or the union of multiple classes.

• Complex Compositional Control: We validate that multiple substructure-specific geometric
losses can be composed to enable more complex anatomical constraints. Further, we show
that this control extends to non-convex substructures with branching or curved geometry.

2 BACKGROUND

Traditional Morphometric Modeling for Anatomy. Morphometry involves quantifying anatomical
structure through geometric measurements. Traditional morphometric approaches measure intrinsic
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Figure 2: Our method involves applying a geometric guidance correction step for every denoising
iteration. Left: The noised latent zσ is passed through the diffusion model and VAE decoder to
produce a clean voxel space prediction x̂0 (Section 4.2). Middle: The segmentation is parsed for
relevant substructures Ω, and geometric moments G are extracted for each substructure (Section 4.3).
Right: Measured geometric moments G are compared to target moments Ḡ through geometric moment
losses. Bottom: The gradient derived from the aggregate loss corrects the denoising step.

features such as length, area, volume, and shape, as well as extrinsic factors such as position and
orientation. Geometric measurements enable applications such as cardiovascular risk stratification
Asheghan et al. (2023); Mahmod et al. (2024) and orthopedic diagnosis Gatti et al. (2024). However,
traditional morphometric approaches face two key challenges: they cannot represent complex
relationships between features, and multiple distinct anatomies may map to the same high-level
measurements. To address these limitations, we propose a framework in which an unconditional
diffusion model is controlled by traditional morphometric features (size, shape, and position) to
generate a variety of realistic anatomical structures, providing an approachable anatomical modeling
interface for both clinical and engineering workflows involving numerical simulation.

Generative Models for Numerical Simulation. Anatomical models in the form of 3D meshes or
label maps, serve as a crucial tool for studying form-function relationships through physical simula-
tions, enabling both scientific discovery and medical device design. However, current approaches to
create such models must trade off between fidelity and control. Simple geometric primitives, such as
cylinders for coronary arteries Madani et al. (2019) and truncated ellipsoids for cardiac chambers
Aróstica et al. (2025) offer parametric control but fail to capture anatomical realism. Data-driven
approaches such as autoencoders Dou et al. (2022); Qiao et al. (2025) represent anatomy in terms
of global shape vectors, and can generate synthetic data for mechanistic studies of heart disease
Hermida et al. (2024); Williams et al. (2022). However, such approaches are limited in their ability
to model interpretable geometric attributes. Deformation editing methods Pham et al. (2023; 2024)
allow for interpretable control of anatomical geometry, but are limited to modifying existing models.
Recently, diffusion-based approaches such as inpainting and partial diffusion have been used to edit
patient-specific anatomy to create “digital siblings” Kadry et al. (2024). However, such edits can
induce undesirable morphological bias when applied to rare and pathological cases. To this end,
recent studies have imposed anatomical features by explicitly providing scalar conditioning features
during training. For example, de Wilde et al. (2025) trained a conditional model on thyroid segmenta-
tions, and Kadry et al. (2025) introduced morpho-skeletal conditioning and guidance mechanisms
for coronary arteries. However, both approaches rely on conditional training and are restricted to
size-related variables such as volume or cross-sectional area. Similarly, Du et al. (2025) presented
a hierarchical conditional diffusion model for generating aortic centerlines and radial profiles, but
is restricted to fixed centerline connectivity and cannot flexibly accommodate topological changes
such as varying branching patterns. In contrast, we propose a modular inference-time framework
that controls unconditional diffusion models across diverse anatomical structures using geometric
attributes such as size, shape, and position.

Spatial Control of Generative Models. Spatial control of generative models is achieved through two
principal approaches. The first approach conditions models on interpretable mid-level representations
(e.g., bounding boxes, ellipsoid parameters, articulation angles) and has been successfully applied to
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images Nie et al. (2024), video Feng et al. (2025), 3D objects Hertz et al. (2022); Koo et al. (2023);
Mu et al. (2021), and proteins Stark et al. (2025). However, these methods cannot accommodate
novel constraints without retraining. The second approach employs energy-based guidance during
the reverse diffusion process Bansal et al. (2023); Du et al. (2023), enabling flexible constraint
composition at test time, but is typically limited to general localization rather than exact geometric
control. Recent works such as self-guidance use attention-based loss functions to enable basic
geometric attribute control (size, position) in text-to-image models Epstein et al. (2023), but is
not designed for multi-label segmentations, nor does it control for orientation or aspect ratio. In
our work, we extend energy-based guidance by introducing differentiable geometric losses for 3D
multi-component anatomical voxel maps based on substructure-specific geometric properties such as
the mass, centroid, and covariance, enabling the composition of multiple constraints across several
independent substructures.

3 ANATOMICAL DIFFUSION MODELS

Let x ∈ RC×H×W×D be a 3D segmentation volume with C tissue channels and (H,W,D) spatial
dimensions. We employ a variational autoencoder (VAE) with an encoder E that maps x to a
lower-dimensional latent representation z = E(x), and a decoder D that maps z back to voxel
space reconstruction x̃ = D(z). The latent grid z ∈ Rc×h×w×d comprises c channels and spatial
dimensions (h,w, d) = (H/f, W/f, D/f) for an integer downsampling factor f .

We use an unconditional latent diffusion model (LDM) as a prior over 3D anatomical segmenta-
tions, trained on the encoded latent representations z. We specifically use the elucidated diffusion
formulation of Karras et al. (2022). In the forward process, data samples z ∼ pdata(z) are pro-
gressively corrupted by adding Gaussian noise, yielding in perturbed data zσ = z + n where
n ∼ N (0, σ2I). The reverse process reconstructs the original data by approximating the score
function ∇zσ

log p(zσ;σ) that controls the reverse diffusion process:

dzσ = −2σ∇zσ
log p(zσ;σ) dt+

√
2σ dw (1)

where dw is the Wiener process. This score function ∇zσ
log p(zσ;σ) = (Dθ(zσ;σ)− zσ)/σ

2 can
be expressed via a denoising function Dθ parametrized by a 3D U-Net Fθ through the following
relation:

Dθ(zσ;σ) = cskip(σ) zσ + cout(σ)Fθ(cin(σ) zσ; cnoise(σ)) . (2)
Where (cskip,cout,cin,cnoise) are noise-level–dependent scaling coefficients. The neural network is
trained by minimizing the clean-data prediction objective L = Eσ,z,n

[
λ(σ)∥Dθ(zσ;σ)− z∥22

]
,

with λ(σ) balancing loss contributions across noise levels.

4 GEOMETRIC GUIDANCE

4.1 OVERVIEW

Our objective is to guide an unconditional diffusion model that synthesizes anatomical segmentations
with geometric constraints for size, position, and shape. These attributes are measured on substructures
that correspond to discrete tissue labels within the 3D voxel map. To do this, we guide the sampling
process with a composite geometric loss applied to a subset of labels. This geometric loss is a
weighted sum of moment-based terms: size via zeroth-order moments (scalar volumes), position
via first-order moments (centroid vectors), and shape via scale-invariant second-order moments
(normalized covariance matrices). Figure 2 illustrates four main stages. First, at each sampling step
we denoise the latent, decode to voxel-space logits, and apply a softmax to obtain class probabilities.
Second, we select the desired anatomical substructures Ω and extract the geometric moments
G = [M, C,S], representing the mass, centroid, and covariance for each substructure. Third, we
compute the geometric loss Lgeom with respect to target moments Ḡ. Lastly, the gradient of this loss
with respect to the noisy latents is used to guide the sampling process.

4.2 SEGMENTATION DENOISING AND GUIDANCE

We formulate loss-based guidance in terms analogous to diffusion posterior sampling Chung et al.
(2023), where the gradient derived from a differentiable geometric loss Lgeom guides the sampling
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process. To guide anatomical generation, the intermediately noised latent zσ is denoised by the
diffusion model to produce a clean prediction ẑ0 = Dθ(zσ;σ) and subsequently decoded into a
voxel-space segmentation x̂0 = D(ẑ0). As the decoder outputs are continuous logits, we apply a
label-wise softmax to ensure that the segmentation values are close to binary. The geometric loss
Lgeom is then computed in a differentiable manner to update the denoiser predictions through the
gradient with respect to the noised latent zσ . The update step is parameterized with a guidance weight
w as follows:

Dw
θ (zσ;σ)︸ ︷︷ ︸

Guided Denoising

= Dθ(zσ;σ)︸ ︷︷ ︸
Uncond. Denoising

−σ2 · w · ∇zσLgeom︸ ︷︷ ︸
Geometric Guidance

(3)

4.3 GEOMETRIC MOMENT LOSS

To isolate guidance to specific substructures representing individual tissues, we map the input
segmentation x̂0 ∈ RC×H×W×D to a set of substructure voxel maps Ω ∈ RE×H×W×D. Here, E
specifies the number of relevant substructures. Substructures are determined either through taking
subsets of the tissue channels or taking the Boolean union of multiple tissue channels.

To extract geometric features, we compute the set of geometric moments G = [M, C,S], where M ∈
RE×1 represents the masses or volumes for each substructure, C ∈ RE×3 represents the centroids,
and S ∈ RE×3×3 represents the covariances. Specifically, for each individual substructure index k,
we define Ωk ∈ R(H×W×D)×1 as the flattened substructure voxel grid and p ∈ R(H×W×D)×3 as
the normalized voxel coordinates between 0 and 1. We compute the geometric moments as

Mk = 1T · Ωk and Ck =
ΩT

k p

Mk
and Sk =

1

Mk
pTdiag(Ωk)p− CT

k Ck (4)

where 1T is the all-ones vector, and diag(·) refers to diagonal matrix embedding. To enable
independent control over size and shape characteristics, we compute a normalized representation of
the covariance matrix. The scale-normalized covariance matrix is defined as Sn

k = Sk/ tr(Λ) where
Λ is the eigenvalue matrix obtained from the eigendecomposition of Sk. Intuitively, the normalized
covariance matrix represents the aspect ratio and orientation of the substructure.

Following the computation of geometric moments, we calculate individual loss terms by comparing
each moment to its corresponding target moment Ḡ = [M̄, C̄, S̄n]. For each geometric feature, we
compute the mean squared error (MSE) between the measured and target values. These individual
loss terms are defined as:

Lsize = LMSE(M,M̄), Lpos = LMSE(C, C̄), Lshape = LMSE(Sn, S̄n). (5)

Using prescribed weight factors λ0, λ1, λ2, we compute the aggregate geometric loss as Lgeom =
λ0Lsize + λ1Lpos + λ2Lshape . The weighted sum of individual weights λi allow us to control the
contribution of individual loss to the guidance process, enabling easy disentangled control by zeroing
out the associated weighting factor.

5 EXPERIMENTS

5.1 UNCONDITIONAL MODEL TRAINING

For diffusion training, we use the label maps provided in the TotalSegmentator dataset Wasserthal
et al. (2023). We extract heart related labels, which include aorta (Ao), pulmonary artery (PA),
pulmonary veins (PV), inferior vena cava (IVC), superior vena cava (SVC), left atrium (LA), right
atrium (RA), left ventricle (LV), and right ventricle (RV), and left ventricular myocardium (Myo).
We manually filter out low-quality label maps, resulting in 596 3D cardiac segmentations with 11
channels and an isotropic voxel edge length of 2mm. See Section 8.2 for further details. We split
the dataset into training and validation sets with an 80/20 split. All target moments and evaluation
metrics are computed on the validation set.

We train an unconditional diffusion model on cardiac label maps similarly to Kadry et al. (2024)
(further details in Section 8.3). To compute our geometric guidance loss, we use the weighted sum of
the individual geometric moment losses, where the guidance weights λi are tuned experimentally
(see Section 8.4).
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Figure 3: Geometric guidance can generate
synthetic anatomy with geometric constraints.
Grid shows example synthetic label maps where
constraints are applied to the myocardium voxels

. Rows: baseline conditioning and guidance
methods (CFG = classifier-free guidance, ANG
= adaptive null guidance).
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Figure 4: Geometric guidance can enforce
conditional fidelity while maintaining realism.
Line plots compare conditioning and guidance
mechanisms based on the geometric properties
of the myocardium. MMD values are multiplied
by 103.

5.2 BASELINES

We compare our approach (unconditional diffusion combined with geometric guidance) to conditional
training approaches. Given the target geometric moments representing the size M, centroid C and
covariance S of each cardiac substructure, we condition the model in the following ways:

• Explicit Concatenation: We directly encode geometric attributes as scalar values in the
conditioning signal Kadry et al. (2025). Here, we adapt this method to positional and shape-
based features. We flatten and stack all geometric moments into a 13-dimensional vector
for all E substructures. We then expand this vector into a voxel grid Gexp ∈ R13×E×h×w×d

which is concatenated to the latents along the channel dimension.

• Implicit Concatenation: We indirectly encode geometric attributes in the conditioning
signal through 3D heatmaps Kadry et al. (2025). Here, we embed geometric moments as 3D
Gaussians in voxel space. For each substructure, we create a voxel map Gimp ∈ RE×h×w×d

where the voxel values encode the Mahalanobis distance.

• Cross-attention: We express the conditioning signal as a sequence of tokens where each
token represents substructure geometry. The dimension of each token corresponds to the
embedded geometric moments Gcross ∈ RE×256. To enable sequence conditioning for the
denoising U-Net, we convert the self-attention layers to cross-attention layers, similar to
Rombach et al. (2022).

We implement guidance mechanisms such as adaptive null guidance (ANG) Kadry et al. (2025)
for explicit concatenation, and classifier-free guidance (CFG) Ho & Salimans (2022) for implicit
concatenation and cross-attention. Further details can be found in Section 8.5.
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5.3 EVALUATION METRICS

We evaluate pairwise conditional fidelity for size, shape, and position by taking the L1-norm between
the target and sample moments. We measure morphological quality metrics by comparing the
distribution of real and synthetic anatomy in morphological feature space Kadry et al. (2024).
To embed each label map, we consider all 10 tissues as substructures and concatenate, over all
substructures, the masses, centroids, and eigenvalues of the normalized covariance matrices. We
specifically use morphological variants of improved precision and recall, as well as the Fréchet
distance (FD) Kynkäänniemi et al. (2019); Kadry et al. (2024). Lastly, we leverage pointcloud-based
metrics to assess 3D shape Yang et al. (2019), such as minimum matching distance (MMD), coverage
(COV), and 1-nearest neighbor accuracy (1-NNA). Distances between pointclouds are computed with
Earth Mover’s Distance (EMD). Further details can be found in Section 8.6.
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Figure 5: Geometric guidance enables inde-
pendent control of size, shape, and position.
Columns show synthetic label maps generated
by geometric guidance applied to the right ven-
tricle voxels using various geometric losses.
Rows represent which geometric feature is being
independently controlled.
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Figure 6: Geometric guidance enables inde-
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Pair plot shows kernel density estimate plots (di-
agonals) and pairwise scatterplots (off-diagonals)
of morphological metrics. Guidance is applied
to control the right ventricle geometry.

5.4 EVALUATING ANATOMICAL GENERATION QUALITY

Table 1: Comparative analysis of various approaches for multi-substructures
compositional generation. The number of substructures indicates the number
of tissues actively constrained during sampling. MMD values are multiplied
by 103.

Morph. Metrics Pointcloud Metrics

Constraints Method FD (↓) Pr. (↑) Re. (↑) MMD (↓) COV (↑) 1-NNA

0 Implicit 1622 0.00 0.99 55.7 0.288 0.915
Ours 34.6 0.70 0.87 9.40 0.53 0.55

1 Implicit 227 0.00 0.87 17.1 0.40 0.79
Ours 38.5 0.60 0.83 9.39 0.52 0.57

3 Implicit 29.8 0.80 0.81 9.21 0.48 0.58
Ours 32.7 0.78 0.94 8.60 0.58 0.52

6 Implicit 31.1 0.82 0.95 8.11 0.56 0.50
Ours 35.5 0.80 0.94 8.50 0.58 0.50

We first aim to compare
and evaluate geometric con-
trol methods on both con-
ditional fidelity and syn-
thetic anatomy quality. We
sample target moments for
a single substructure (my-
ocardium) from the valida-
tion set and generate 200
anatomical segmentations
per method. We sweep
over guidance weights w ∈
[0, 2]. In Figure 4, we show
that geometric guidance en-
hances conditional fidelity,
especially at higher guid-
ance weights. We observe that our method maintains generation quality, retaining similar levels of
morphological and pointcloud evaluation metrics with increasing guidance. Figure 3 shows example
label maps generated through varying guidance values for all methods, across guidance values for
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all methods; only our method and implicit conditioning align the target and sample ellipsoids under
guidance. Further information on which features were plotted can be found in Section 8.13.

5.5 EVALUATING GEOMETRIC DISENTANGLEMENT

We next show that our guidance framework uniquely enables disentangled control of geometric
attributes. We use 100 target moments for myocardial labels from the validation set using no losses
(Uncond.), a combination of all losses (Lgeom), or each individual moment loss (Lsize,Lpos, and
Lshape). Figure 9 shows that each individual loss improves its corresponding conditional-fidelity
metric while leaving the others approximately unchanged. The main exception is the interaction
between shape and mass, where adding a guidance weight for the shape loss enhances mass fidelity.
This phenomenon is likely due to correlation of size and shape in the dataset. Qualitative results can
be seen in Figures 5 and 6, where the right ventricle is constrained independently by mass, position,
or shape. For example, mass-only guidance produces a narrow peak in the mass marginal while
the other morphology metrics remain broad, whereas applying all geometric losses collapses all
marginals to narrow peaks at their target values.

Target Ellipsoid Sample Ellipsoid

Uncond.

1 Component

2 Components

3 Components

Implicit Ours

Figure 7: Geometric guidance ex-
hibits enhanced multi-part com-
positional generation compared to
a conditional drop-out baseline.
Columns: Baseline vs. our method.
Rows: Synthetic label maps with a
varying number of voxel labels .

          Size           Aspect Ratio

          Position              Orientation

Real 1 Substructure 2 Substructures 3 Substructures

Figure 8: Our guidance framework enables multi-part
compositional generation. Pair plot shows kernel density
estimate plots (diagonals) and pairwise scatterplots (off-
diagonals) for various morphological metrics. Guidance
is applied to control the geometry for a varying number of
substructures.

5.6 EVALUATING MULTI-PART COMPOSITIONALITY

We evaluate the ability of our method to achieve multi-part control under arbitrary constraints. We
sample 100 target moment sets from the validation set and constrain generation based on: (a) only
the myocardium (1 substructure), (b) the right heart labels (3 substructures), and (c) both right
and left heart labels (6 substructures). For geometric guidance, we use an unconditional model
and select the appropriate substructures Ω during guidance. For our baseline, we retrain the best
conditional diffusion model (implicit) with 6 substructures using dropout (further details can be found
in Section 8.6). Results are shown in Table 1 and Figure 7, which show that with a small number of
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constrained substructures, implicit conditioning with dropout fails to generate high-quality anatomy
as measured by morphological and pointcloud metrics. Because the implicit conditional baseline is
trained with independent dropout over six ellipsoidal conditioning channels, the fully conditioned case
(all channels present) is vastly more frequent than the unconditional case (all channels empty). As a
result, unconditional sampling corresponds to the rarest training configuration and yields degraded
anatomical quality in Figure 7 and Table 1.

We further show in Figure 8 that controlling multiple substructures via geometric guidance can
effectively sample from lower-dimensional slices of the original morphological distribution. For
instance, when guidance is applied to a single substructure, the pair plots show a sharp concentration
around the target value for the right ventricle, while the remaining structures retain broad distributions.
When three substructures are guided simultaneously, the corresponding morphological marginals
all collapse to narrow peaks at their target geometric values. Finally, Figure 10 shows that our
guidance framework applies to complex, non–star-shaped geometries, including curved and branching
substructures, as well as Boolean unions involving multiple tissue classes considered as a single
substructure (e.g., both vena cavae or all chambers).

5.7 GEOMETRIC INPAINTING AND BIOPHYSICAL SIMULATIONS

We demonstrate that our geometric guidance framework can controllably edit patient-specific anatomy
for simulation experiments. We consider an example involving biventricular pressurization in which
we edit a label map to enlarge or shrink the RV. As shown in Figure 11, we define the RV target
geometry by doubling or halving the mass measured from the original label map (left column insets).
We apply tissue-based inpainting Kadry et al. (2024) with geometric guidance to edit the RV (left
column) and convert the label map to a tetrahedral mesh (middle column). We simulate biventricular
pressurization for the baseline patient and edited variants, showing how RV volume modulates wall
displacement (right column). Further details can be found in Section 8.7.
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Figure 10: Geometric guidance is compatible
with complex substructures. Qualitative results
showing geometric control of substructures with
non-convex or branched features, as well as sub-
structures comprising multiple tissues.
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Figure 11: Geometric guidance can control-
lably inpaint anatomical features for coun-
terfactual biomechanical simulations. Left
column: a baseline patient edited to vary right-
ventricle size, while maintaining all other sub-
structures . Middle column: cropped biventricu-
lar mesh from each scenario. Right column: edit-
ing right-ventricle size while retaining the left
ventricle modulates biomechanical outcomes.

5.8 GENERALITY OVER ANATOMICAL SYSTEMS AND STRUCTURES

We aim to show that geometric guidance can control unconditional diffusion models trained on a wide
variety of anatomical systems. To this end, we construct and utilize three datasets of 3D multi-class
patient-specific label maps: one for the branched ascending aorta, one for the spinal vertebral column,
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Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Aorta

Spine

Knee

Unconditional Cardiocomposer

Figure 12: Geometric guidance can control the generation of a wide variety of anatomical
systems. We present label maps that were generated from a unconditional and guided latent diffusion
models. We train a separate diffusion model for each anatomical dataset. For the aortic dataset,
we control the main trunk, for the spinal dataset, we control the sixth, seventh, and eighth thoracic
vertebrae, while for the knee dataset, we control the femur.

and one for the distal femur comprising the femoral condyles and their articular cartilage, without
the patella or tibia. Further details can be found in Section 8.2. In Figure 12, we show typical
unconditional samples which do not correspond to the target geometry, as well as samples from
geometric guidance, which controls substructure geometry to a high degree of fidelity.

6 LIMITATIONS

Our method has several limitations, for example, the relative weights of the geometric moments should
be obtained through experimental tuning, similar to all guidance frameworks. However, we found
that the same set of loss weightings transfer well to entirely different anatomical systems such as the
aorta, spinal column, and knee, indicating that only minimal additional tuning is required. Moreover,
substructures are currently defined based on label map class, and cannot represent sub-class localized
features such as cross sections. This can be addressed by developing localized substructure selection
methods, which would enable the control of localized geometric attributes. Lastly, anatomical
diffusion models can generate topologically incorrect substructures-such as disconnected aortas or
several left atria, making the resulting simulation physics inaccurate. This can be addressed by
filtering out topologically incorrect anatomies, at the cost of some wasted computation.

7 CONCLUSIONS

We present a flexible method to impose geometric constraints on diffusion models of 3D multi-class
anatomical label maps. By measuring geometric moments relating to size, shape, and position of
various substructures during inference, we enable energy-based guidance without conditional training.
We show that our framework can independently control geometric attributes such as size, position,
or shape, and constrain multiple anatomical substructures in a compositional manner. We also
demonstrate geometric guidance across a wide range of anatomical systems and structures, spanning
cardiac, vascular, and skeletal systems. Our framework enables custom-tailoring realistic anatomy
for computational simulation experiments, elucidating the causal relationships between form and
simulated function.
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8 APPENDIX

8.1 OVERVIEW

• In Section 8.2, we provide details on dataset curation and processing.
• In Section 8.3, we provide implementation details for our autoencoder and diffusion model.
• In Section 8.4, we provide implementation details for our guidance algorithm.
• In Section 8.5, we provide implementation details for our conditional generation baselines.
• In Section 8.6, we provide further experimental details for evaluation and inference.
• In Section 8.7, we provide implementation details for our biomechanical simulations.
• In Section 8.8 we provide a dataset scaling analysis for our latent diffusion model.
• In Section 8.9 we provide qualitative results for a procedurally generated ellipsoid dataset.
• In Section 8.10 we provide an autoencoder reconstruction error analysis.
• In Section 8.11 we provide a scale-factor sweep analysis for target modification.
• In Section 8.12 we provide quantitative results demonstrating disentangled generation for

alternative geometric features derived from the second-order moment.
• In Section 8.13, we present additional morphological distribution plots that examine the

effect of guidance weight as well as the choice of control technique.

8.2 DATASETS

For our study, we construct four separate datasets of anatomical segmentations to qualitatively
demonstrate the flexibility of geometric guidance. These datasets represent 1) whole-heart cardiac
segmentations with great vessels, 2) the branched ascending aorta, 3) multi-vertebral spinal column,
and 4) the femoral condyle and articular cartilage. We primarily use the cardiac dataset for our
experiments.

For the cardiac dataset, we utilize TotalSegmentator v2 Wasserthal et al. (2023), with 596 cases
manually selected based on segmentation quality assessment. Cardiac structures including the
myocardium (Myo), left and right atria (LA & RA), left and right ventricles (LV & RV), aorta (Ao),
and pulmonary artery (PA) were segmented using a specialized TotalSegmentator model trained on
sub-millimeter resolution data. For the inferior vena cava (IVC), superior vena cava (SVC), and
pulmonary veins (PV), we retain the labels from the original dataset. To ensure anatomical validity, we
perform topological filtration on all structures except the pulmonary veins, where filtration involves
extracting only the largest connected component. The resulting segmentations are standardized by
resampling to a uniform voxel resolution of 2mm and subsequently cropped to a fixed range. The
crop center is determined from the union of all four chamber segmentations, and the crop size is 1283
voxels.

For the aorta dataset, we extract labels directly from the original TotalSegmentator v2 Wasserthal
et al. (2023) segmentations, without applying a specialized model, resulting in 450 3D segmentations
manually selected based on segmentation quality assessment. The labels include the main aortic
trunk and the ascending branches, which comprise the brachiocephalic trunk (BCT), left common
carotid artery (LCCA), right common carotid artery (RCCA), left subclavian artery (LSCA), and
right subclavian artery (RSCA), for a total of 7 channels per segmentation. All segmentations are
resampled to an isotropic voxel size of 2mm and cropped to a spatial size of 1283 using a crop center
determined from the center of all combined tissues.

For the spinal dataset, we utilize the CTSpine1K dataset Deng et al. (2021) and extract all vertebral
body segmentations, resulting in 784 3D segmentations. The segmentations include 7 cervical
vertebrae (C1–C7), 12 thoracic vertebrae (T1–T12), and 5 lumbar vertebrae (L1–L5), for a total
of 25 channels per segmentation. To ensure spatial consistency and anatomical completeness, all
segmentations are first resampled to an isotropic voxel spacing of 1mm. The center of the crop box
is determined from the union (voxelwise sum) of all vertebral structures in each scan, and a fixed
crop of 1283 voxels is applied for each patient.

For the knee dataset, we utilize the ShapeMedKnee dataset Gatti et al. (2024) and extract 2000 3D
segmentations of the left knee. The segmentations include the femur (Fe) and articular cartilage (Ca),
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resulting in 3 channels per segmentation. To ensure spatial consistency and anatomical completeness,
all segmentations are first resampled to an isotropic voxel spacing of 1mm. A fixed crop size of 1283
voxels is applied for each patient.

8.3 LATENT DIFFUSION MODEL IMPLEMENTATION

For this study, we adapt the VAE and LDM architectures specified by Kadry et al. (2024). The VAE
input and output channel counts are set to 11, corresponding to 10 distinct cardiac labels along with
an additional channel for the background. The number of input channels for the LDM is set to 3 for
unconditional sampling. The hyperparameters and training configuration for the VAE and LDM are
listed in Table 2 and Table 3 respectively.

Table 2: Autoencoder hyperparameters

Hyperparameter Value
lr 1× 10−5

Epochs 40
Batch Size 1

Num. Channels [16,32,64]
Num. Res. Blocks 2

Downscaling Factor 4
Recon. Loss Weight 1

KL Weight 1× 10−6

Table 3: Diffusion model hyperparameters

Hyperparameter Value
Training

lr 2.5× 10−5

Epochs 50
Batch Size 1

Num. Channels [64, 128, 196]
Num. Res. Blocks 2
Num. Attn. Heads 1

Attn. Res. 8, 4, 2
σdata 1

p(σ) mean 1
p(σ) std 1.2

Sampling
σmin 1× 10−2

σmax 80
ρ 3

8.4 GEOMETRIC GUIDANCE IMPLEMENTATION

8.4.1 GEOMETRIC MOMENT COMPUTATION

To ensure that the extracted components yield interpretable moments, we require the voxel grid
values to be softly binarized, with one tissue channel approaching 1 while the others are close to 0.
To achieve this, we apply a softmax function with a temperature of 1. During the computation of
geometric moments, we observed that segmentations that are empty or nearly empty, particularly
those with small components, lead to unstable gradients that significantly degrade the quality of
generation. This instability arises because the centroid and covariance loss calculations utilize mass
in the denominator. To mitigate this issue, we introduce a small amount of noise to the mass term
whenever it appears in the denominator, thereby stabilizing the overall process. After computing all
moments, we normalize the mass term by the total number of voxels N = HWD such that the term
represents volume fraction. Unless stated otherwise, we use 50 denoising steps.
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8.4.2 GUIDANCE WEIGHT TUNING

We determine the weight factors λ = [λ0, λ1, λ2] for our geometric loss through tuning each loss in
isolation. We tune for conditional fidelity while retaining reasonable generation quality metrics. The
final weight values can be seen in Table 4.

Table 4: Geometric moment losses and their corresponding weight factors.

Guidance
Loss

Weight
Factor λ

Lsize 107

Lpos 105

Lshape 104

8.5 BASELINE METHODS IMPLEMENTATION

• Explicit Conditioning: To ensure that the elements of Gexp are roughly between 0 and 1, we
min-max normalize the masses M, centroids C, and normalized covariances Sn with values
calculated from the real dataset (Table 5). The LDM input channel count is increased to
accommodate the concatenated input. This method does not readily permit the use of dropout
to train a diffusion model in an unconditional manner because the null condition is defined as
zero—equivalent to the minimum moment values. We include explicit conditioning results
for guidance weights smaller than 0 in Figure 4 for completeness.

• Cross-Attention Conditioning: Our initial tokens consist of 13-dimensional vectors rep-
resenting the concatenation of mass M, centroids C, and normalized covariances Sn. The
tokens are then min-max normalized similar to explicit conditioning and embedded into a
256 dimensional vector for cross-attention. To embed the component index, we use a linear
embedding layer. To embed the geometric moments, we use an MLP with three linear layers
and apply a ReLU operation after the first and second layers. Both embeddings are added
together and used to condition the U-Net with cross-attention, where we use 8 attention
heads. To enable unconditional generation, we randomly dropout each channel of Gcross with
a probability of 0.1.

• Implicit Conditioning: To compute the ellipsoidal distance map, we use the centroids C and
non-normalized covariances S for each component to compute the Mahalanobis distance
De Maesschalck et al. (2000) for each voxel position. We then apply a shifted sigmoid
transform—with a slope of -0.5 and a bias of 1 to constrain the outputs between 0 and
1, and subsequently concatenate the resulting grid to the latents. To enable unconditional
generation, we randomly dropout each channel of Gimp with a probability of 0.1. One
limitation of this approach is that the target mass can only be targeted indirectly through the
non-normalized covariance term, which can be seen in the conditional fidelity plot for size
in Figure 4.

Table 5: Normalizing constants for geometric moments during explicit and cross-attention based
conditioning.

Geometric
Moment

Normalizing
Minimum

Normalizing
Maximum

M 3.19× 10−3 1.3× 10−2

C 0 1
S −1× 10−4 1× 10−2
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8.6 ADDITIONAL EXPERIMENTAL DETAILS

• Morphological evaluation metrics: To compute the morphological metrics, the features
are normalized by the mean and standard deviation of the real data. To calculate precision
and recall, we use 5 neighbors.

• Pointcloud evaluation metrics To compute the point cloud metrics, we calculate MMD,
COV, and NNA for every tissue label using 256 points sampled using farthest point sampling.
The metrics are then averaged over the number of components. To compute the pointcloud
distances, we approximate Earth Mover’s Distance (EMD) through the Sinkhorn divergence
Feydy et al. (2019).

• Disentangled Generation: Disentangled generation is done by zeroing out the inactive loss
weights. Exact configuration details are shown in Table 6. We use 50 denoising steps for all
generated samples.

• Compositional Generation: Our compositional generation experiments vary the number of
constrained substructures. The exact labels used for each experiment are detailed in Table 7.
We use 100 denoising steps for all generated samples.

Table 6: Configuration details for the disentangled generation ablation study. Checkmarks ✓ indicate
the associated weight factor λi is active while × indicates the weighting factor is zeroed out.

Guidance Loss λ0 λ1 λ2

Uncond. × × ×
Lsize ✓ × ×
Lpos × ✓ ×
Lshape × × ✓

Lgeom ✓ ✓ ✓

Table 7: Configuration details for the compositional generation study.

Substructures Labels
0 None
1 RV
2 RV, RA
3 RV, RA, PA
6 RV, RA, PA, LV, LA, Ao

8.7 BIOMECHANICAL SIMULATION DETAILS

• Biventricular Cropping: As only myocardial tissue is available for the left ventricle, we
approximate an RV myocardial wall by dilating the RV cavity mask to a constant thickness
of 4 mm (2 voxels) corresponding to the clinical literature Ho & Nihoyannopoulos (2006).
To crop the left and right ventricles at the base of the heart, we define a vector from the LV
centroid to the LA centroid, and crop the ventricles by adjusting the position threshold along
the defined direction.

• Tetrahedral Meshing and Processing: The segmentation is then converted into a surface
mesh using marching cubes, with a voxel size of 2 mm. Tetrahedral mesh generation is
performed using the open-source software Gmsh and MeshLab. The three anatomical
models, large RV, baseline patient, and small RV (see Figure 11), are discretized into 39,780,
42,768, and 47,347 linear tetrahedral elements, respectively, with an average edge length of
2 mm.

• Pressurization Simulation: An in-house finite element method (FEM) solver, implemented
in Fortran with MPI, is used for the simulations. The solver is based on the variational
multiscale method, providing stabilized FEM formulations Goraya et al. (2024); Kang et al.
(2022). Simulation results are visualized using the open-source package ParaView.
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The myocardium is modeled as a standard neo-Hookean material with a Young’s modulus of
25 kPa and a Poisson’s ratio of 0.4. Physiological pressure loads of 12 mmHg and 6 mmHg
were applied to the LV and RV endocardium, respectively, corresponding to normal diastolic
blood pressure. To constrain rigid body motion, zero-displacement Dirichlet boundary
conditions are imposed at the base of the heart, while a stress-free Neumann boundary
condition is applied on the pericardium.
The nonlinear finite-deformation elasticity problem is then solved using the New-
ton–Raphson (NR) method. A direct solver (MUMPS) is employed to solve the discretized
algebraic system at each NR iteration, with a convergence tolerance set to 10−20 for the
initial residual. Simulations are carried out on a cluster using 128 processors.

8.8 DATASET SCALING ANALYSIS

We aim to understand the effect of dataset size on both generation quality and conditional fidelity
under guidance. To this end, we train four additional autoencoder–diffusion model pairs at different
split sizes, using 20%, 40%, 60%, and 80% of the original training set, while keeping the validation
set fixed across all models. As shown in Figure 13, generation-quality metrics improve as the training
dataset size increases up to 40%. In contrast, conditional fidelity under geometric guidance remains
approximately invariant across dataset sizes.

8.9 PARAMETRIC ELLIPSOID DATASET ANALYSIS

To further characterize our geometric guidance procedure in isolation from complex anatomical
variation, we construct a toy dataset of 3D two-channel ellipsoidal label maps with varying sizes,
shapes, and positions. To generate each voxel map, we sample the ellipsoidal radii uniformly from 0
to 0.5, where 1 corresponds to the full length of the voxel map. We additionally sample Euler angles
uniformly from 0 to 2π, and choose the centroid to lie anywhere within the voxel map such that the
ellipsoid is not cropped by the voxel boundaries. We generate 800 training and 200 validation label
maps.

We then train a latent diffusion model with double the number of base channels to accommodate
the large geometric variation in the dataset. We apply our geometric guidance method with centroid
and covariance loss weights multiplied by a factor of 10. As shown in Figure 14, our geometric
guidance framework can enforce precise geometric constraints on parametric ellipsoid geometries in
a disentangled manner.

8.10 AUTOENCODER RECONSTRUCTION FIDELITY ANALYSIS

We aim to determine whether the conditional fidelity metrics and topological quality are lower-
bounded by the VAE reconstruction error. We first auto-encode 24 seed label maps and measure
conditional fidelity for size, position, and shape, as well as the Betti error for each anatomical structure.
We then sample 24 label maps over 50 diffusion steps with and without right-ventricular geometric
guidance. As summarized in Table 8, geometric guidance substantially improves conditional fidelity
relative to unconditional sampling, while the resulting errors for position and shape remain above the
VAE reconstruction error.

In terms of topology, we quantify quality using the Betti error, defined as the number of extra
connected components relative to the expected topology (e.g., if the aorta is expected to be a single
connected component but two are measured, the Betti error is 1). We observe that the VAE introduces
only a small number of topological defects, whereas the unconditional diffusion model produces
more frequent errors, especially for the aorta (Ao) and pulmonary artery (PA) labels. Finally, we find
that geometric guidance can further increase the Betti error, particularly for the PA and inferior vena
cava (IVC) labels.

8.11 EDITING SCALE FACTOR ANALYSIS

We investigate how far the target right-ventricular mass can be scaled while still producing plausible
samples. For each editing factor in {0.1, 0.5, 1.0, 2.0, 4.0}, we take 64 seed label maps, compute
the RV mass, multiply it by the editing factor, and use the scaled mass as the conditioning target
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Figure 13: Conditional fidelity is invariant to training set size, while generation quality metrics
benefit from training set size up to a limit. Line plots show conditional fidelity and generation
quality for latent diffusion models trained on different-sized datasets. In this plot, the right ventricle
is constrained.

for mass-only geometric guidance. As summarized in Table 9, decreasing the target mass (factors
< 1) yields samples whose size error and distributional metrics remain close to the unedited case
(factor = 1): size error increases moderately, and FMD and 1-NNA remain within the same order
of magnitude as the baseline. In contrast, increasing the target mass beyond a factor of 2 leads to
clear degradation: at a factor of 4, both the size error and FMD increase by more than one order of
magnitude, and 1-NNA worsens, indicating that strong mass upscaling produces distorted label maps.

8.12 GEOMETRIC GUIDANCE WITH ALTERNATIVE MOMENT-FEATURES

In our main study, we demonstrated guidance by targeting the normalized second moment to control
shape and orientation independently from size. We aim in this section to preliminarily demonstrate
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Figure 14: Geometric guidance can control unconditional diffusion models of procedurally
generated ellipsoids. We generate ellipsoidal label maps with varying loss-function combinations
to achieve disentangled control.

Table 8: Conditional fidelity and Betti error rates for reconstructed or synthetic label maps. Betti
error is computed as the mean number of connected components minus 1. Values for size, position,
and shape fidelity were multiplied by 1e5, 1e4, 1e4 respectively.

Cond. Metrics Connected Component Betti Error
Method Size Pos. Shape Ao PA IVC SVC LA RA LV RV Myo
VAE Recon. 4.74 2.54 21.53 0.125 0.0 0.125 0.042 0.042 0.083 0.0 0.083 0.0
Unconditional 106.03 168.75 512.42 1.208 0.583 0.125 0.0 0.083 0.083 0.0 0.0 0.0
Guided 9.34 25.61 81.77 1.458 1.042 0.417 0.042 0.083 0.333 0.042 0.083 0.042

that we can achieve fine-grained disentangled control of second-moment derived attributes such as
extent, stretch, and orientation. We first decompose the covariance matrix as follows:

S = vUΛnUT , (6)

where we define the extent v ∈ R as the trace of the eigenvalue matrix Λ ∈ R3×3, and normalize Λ by
v to obtain the anisotropic stretch Λn = Λ/v. Finally, orientation is represented by the eigenvectors
U ∈ R3×3 derived from the decomposition.

We then define three new geometric losses, which consist of MSE losses for extent and stretch, as
well as a dot product loss for orientation.

Lextent = LMSE(v, v̄), Lstretch = LMSE(Λ
n, Λ̄n), Lorient = Ldot(U, Ū). (7)
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Table 9: We generate label maps with mass-only geometric guidance applied to the right ventricle
and artificially changing the target mass derived from the seed label map.

Cond. Metrics Morph. Metrics Pointcloud Metrics
Editing Factor Size FMD (↓) Pr. (↑) Re. (↑) MMD (↓) COV (↑) 1-NNA

0.1 84.06 126.0 0.14 0.34 13.51 0.295 0.826
0.5 19.95 59.6 0.55 0.50 10.51 0.406 0.713
1.0 12.60 40.3 0.59 0.73 9.26 0.520 0.567
2.0 18.55 167.5 0.16 0.84 11.08 0.430 0.745
4.0 732.10 1690.0 0.00 0.97 26.81 0.273 0.926

The dot product loss Ldot is computed as the mean misalignment between corresponding eigenvectors
from U and Ū,

Ldot(U, Ū) =
1

3

3∑
i=1

(
1− |u⊤

i ūi|2
)
, (8)

where ui and ūi denote the i-th columns of U and Ū, respectively, and the absolute value enforces
sign-invariance of eigenvector alignment.

With these losses, we conduct a disentangled generation experiment where we sample 32 label maps
for each loss ablation setting, with the loss weightings detailed in Table 10. Conditional fidelity for
extent and stretch is quantified using the mean absolute error, while conditional fidelity for orientation
is quantified using the dot-product loss directly. As shown in Table 11, geometric guidance based on
second-order derived features can be applied in a disentangled manner. For example, orientation-only
guidance achieves a smaller orientation error while maintaining extent and stretch fidelity comparable
to unconditional sampling.

Table 10: Second order moment losses and their corresponding weight factors.

Guidance
Loss

Weight
Factor λ

Lextent 105

Lstretch 104

Lorient 102

Table 11: We enable disentangled control over geometric features derived from decomposing the
second moment into extent, stretch, and orientation. Conditional fidelity metrics for extent and stretch,
as well as MMD values were multiplied by 1e3.

Cond. Metrics Morph. Metrics Pointcloud Metrics
Method Extent Stretch Orient. FMD (↓) Pr. (↑) Re. (↑) MMD (↓) COV (↑) 1-NNA
None 2.14 42.30 0.21 67.63 0.44 0.80 10.22 0.484 0.563
Extent Only 1.42 41.85 0.20 61.99 0.50 0.78 10.12 0.459 0.566
Stretch Only 2.26 3.60 0.23 60.53 0.53 0.80 10.08 0.491 0.559
Orient Only 1.94 41.29 0.0064 60.81 0.59 0.77 10.08 0.525 0.564

8.13 MORPHOLOGICAL ANALYSIS

We represent size as the mass of each substructure. Position is represented by the centroid x-
coordinate. To characterize shape, we extract the largest eigenvalue and its associated eigenvector
from the covariance matrix. Orientation is represented by the polar angle of the principal axis (in
spherical coordinates), while elongation is defined as the ratio between the largest eigenvalue and the
second-largest eigenvalue.

Additional morphological plots are presented below. In Figure 16, we show that geometric guidance
better aligns the distribution of geometric features when comparing real and synthetic anatomies.
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Figure 15 shows that all geometric-control methods can recapitulate the morphological distribution
exhibited by the real data.
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Figure 15: Geometric guidance can help recapitulate morphological distributions. Pair plot
shows kernel density estimate plots (diagonals) and pairwise scatterplots (off-diagonals) for various
morphological metrics. We plot metrics for anatomies generated through conditional baselines and
geometric guidance (ours). In this plot, the myocardium is being constrained.
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Figure 16: Geometric guidance improves morphological distribution similarity between real and
synthetic anatomy. Pair plot shows morphological relationships for mass (top left panel), centroid
(bottom left panel), normalized axis lengths (top right panel), and orientation (bottom right panel),
where the myocardium labels are being constrained. Diagonal plots show kernel density estimates
(LV vs RV), off-diagonal plots show pairwise scatterplots.
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