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Figure 1. Anatomica is a compositional diffusion-guidance framework for generating segmentations based on anatomical features
that are localized within cuboidal control domains. Left: We generate voxel maps according to localized target geometry (size, shape,
and position) visualized as red ellipsoids. Right: We generate voxel maps according to target topology (components, loops, and voids).

Abstract

We present Anatomica: an inference-time framework for
generating multi-class anatomical voxel maps with local-
ized geo-topological control. During generation, we use
cuboidal control domains of varying dimensionality, lo-
cation, and shape, to slice out relevant substructures.
These local substructures are used to compute differen-
tiable penalty functions that steer the sample towards tar-
get constraints. We control geometric features such as
size, shape, and position through voxel-wise moments,
while topological features such as connected components,
loops, and voids are enforced through persistent homology.
Lastly, we implement Anatomica for latent diffusion mod-
els, where neural field decoders partially extract substruc-
tures, enabling the efficient control of anatomical proper-
ties. Anatomica applies flexibly across diverse anatomical
systems, composing constraints to control complex struc-
tures over arbitrary dimensions and coordinate systems,
thereby enabling the rational design of synthetic datasets
for virtual trials or machine learning workflows.

*Equal contribution.

1. Introduction

Anatomical form plays a vital role in dictating the func-
tion and dysfunction of physiological systems. By virtually
modelling patient-specific organ systems as 3D voxelized
segmentations, we can leverage numerical simulators to re-
veal structure-function relationships that inform clinical re-
search and medical device design. Such use cases include
the simulation of clinical trials to evaluate medical devices
[1, 42, 44], or simulating image-formation to create robust
datasets for machine learning workflows [4, 11, 16, 19, 20].

Due to the sparsity and imbalances inherent to real-world
datasets, there has been growing interest in augmenting
anatomical datasets with synthetic data. A key advantage
of using generative models over patient datasets lies in their
controllability. Conditional generation of medical images
based on anatomical or demographic information has been
shown to improve the performance of machine learning
classifiers and segmentation networks [16, 35, 38]. How-
ever, conditional generation of 3D multi-class segmenta-
tions based on anatomical features remains difficult. These
features encompass both geometry (shape and size) and
topology (connected components, loops, or voids). More-
over, such features are defined compositionally over mul-



tiple substructures within the segmentation, with varying
dimensionality (e.g., 3D vs 2D), and across varying coor-
dinate systems (e.g., Cartesian vs curvilinear). The ideal
generative model must not only control such features in a
precise and compositional manner, but also offer control
mechanisms that are intuitive to use.

We introduce Anatomica: an inference-time framework
for controlling anatomical latent diffusion models based
on arbitrarily localized properties related to geometry and
topology. We formulate guidance through two key stages
for each sampling step. First, we differentiably parse
voxel-space segmentations to extract anatomical substruc-
tures with varying dimensionality over arbitrary coordinate
systems. Second, we measure geometric and topological
properties in a differentiable manner and apply potential
functions to guide the reverse sampling process. Lastly,
we adapt this guidance framework for latent diffusion mod-
els through neural field decoders which map arbitrary query
points in latent space to voxel space, enabling the efficient
measurement of anatomical properties from latent space.
We advance the state-of-the-art in the following ways:

• Differentiable and Localized Substructure Extraction:
We introduce a modular method to differentiably parse
localized and anatomically relevant substructures from
voxel-space segmentations (V-parsing). We base our
method on cuboidal control domains with varying scales,
positions, and orientations. By arranging multiple control
domains of varying dimensionality across relevant coor-
dinate systems, we enable the characterization of a wide
array of anatomical systems and structures.

• Unified Geo-Topological Measurement and Guidance:
We demonstrate that applying differentiable measurement
and potential functions over anatomical substructures al-
lows us to constrain localized properties through diffu-
sion guidance. This includes geometric properties such as
size, shape, position, and orientation, as well as topolog-
ical properties such as the number of components, loops,
or voids. We show that, by combining different control
domains and potential, we unlock a rich design space for
compositional anatomical control, within which a wide
variety of structures can be controllably generated.

• Latent Diffusion Guidance with Neural fields: We
show that neural field decoders enable the efficient mea-
surement of voxel-space properties within control do-
mains directly from latent space during sampling (L-
parsing). By exploiting the ability of neural fields to
decode arbitrarily discretized point grids, we avoid the
computational overhead of full-volume decoding. We in-
troduce two partial decoding strategies: coarse L-parsing
decodes globally at reduced spatial resolution, while lo-
calized L-parsing decodes local regions at high resolu-
tion.

2. Related Work
Geometric Control for Generative Models of Anatomy
Geometric features such as size and shape play a crucial
role in biophysical dynamics [14, 26]. Modelling anatomy
with simple shapes such as cylinders [3, 37] provides con-
trol over form but not realism. Statistical shape models
[12, 41, 47] represent realistic variation via global shape
vectors [22, 47] but are not as interpretable or editable. To
bridge this gap, recent studies conditionally train genera-
tive models based on size-based measures [9, 28]. Recently,
Kadry et al. [29] proposed inference-time geometric guid-
ance via differentiable geometry, expanding control to size,
position, and shape, in a compositional manner over multi-
class anatomy. However, this method was limited to glob-
ally defined geometric properties in 3D. In this work, we
extend geometric guidance to arbitrarily localized attributes
based on cuboidal control domains of varying scale, posi-
tion, orientation, and dimensionality. By arranging control
domains over non-Cartesian coordinate systems, we enable
significantly more complex compositional control of physi-
ologically relevant geometric features.
Topological Deep Learning Topological properties such as
the number of components, loops, or voids also play a cru-
cial role in modulating biophysical dynamics [33]. To regu-
larize machine learning workflows in a differentiable man-
ner, persistent homology (PH) can be used [5] to measure
the continuous-valued persistence of topological features.
PH-based topological losses have been used for the training
[7] and test-time adaptation [6] of segmentation networks.
Similarly, PH has been used to conditionally train diffusion
models of 2D binary label maps [21] and 3D surfaces [24].
In contrast to using topological losses to update network
weights, we use PH for inference-time control generative
models that sample multi-class 3D anatomical segmenta-
tions without conditional training. This enables us to flex-
ibly constrain topological features in a plug-and-play man-
ner without retraining.
Spatial Conditioning for Generative Models Spatial con-
trol of generative models relies on two main strategies.
The first conditions models on mid-level representations
(e.g., bounding boxes, ellipsoid parameters) [2, 15, 23, 34,
39]. The second involves guidance methods, such as self-
guidance [13], which employs attention-based losses for ba-
sic geometric control (size, position) in text-to-image mod-
els, but it is not suited for multi-label segmentations, nor is it
adapted for complex constraints needed to describe anatom-
ical shape. In our work, we extend energy-based guid-
ance to localized control over geometry and topology by in-
troducing differentiable potentials for 3D multi-component
anatomical voxel maps based on substructure-specific prop-
erties. We show that this enables a rich design space for
anatomical control, within which a wide variety of organs
can be controllably generated.
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Figure 2. Differentiable measurement of anatomical properties from multi-class voxel maps. A: We differentiably parse relevant
substructures from anatomical voxel maps for localized measurement. B: We spatially transform cuboidal primitives (template domains)
into control domains that slice into anatomical structures (V-parsing). C: The substructure is then differentiably measured in terms of
geometric properties; as well as D: persistent homology-based topological properties.

3. Methodology

3.1. Anatomical Latent Diffusion Models
Autoencoder with Neural Field Decoder We develop our
variational autoencoder based on hybrid implicit-explicit
representations [40]. Our dataset consists of 3D segmen-
tation volumes V ∈ RC×H×W×D with C tissue channels
and (H,W,D) spatial dimensions. During training, a con-
volutional encoder E first encodes the voxelized segmen-
tation map V into a voxelized latent grid representation
z = E(V), where z ∈ Rc×h×w×d comprises c channels
and spatial dimensions (h,w, d) = (H/f, W/f, D/f) for
an integer downsampling factor f . To decode back into
voxel space, a 3D query point grid Xq ∈ RH×W×D×3 is
used to compute a latent point grid through the latent slice
operator T l[Xq] : R3 → Rc which applies trilinear interpo-
lation for each query point as in Jaderberg et al. [25]. The
resulting latent grid is then pointwise decoded with a neural
field decoder F : Rc → RC into the predicted voxel map
V̄ ∈ RC×H×W×D:

V̄ = F [Xq]︸ ︷︷ ︸
Decode Latent

◦ T l[Xq](z)︸ ︷︷ ︸
Slice Latent

. (1)

Here, F is parametrized as a multi-layer perceptron that
takes in the interpolated latent point grid and positionally
encoded query points, and ◦ denotes function composition.

Unconditional Diffusion Model We use an unconditional
latent diffusion model (LDM) as a prior over 3D anatom-
ical segmentations. In the forward process, data samples
are progressively corrupted by adding Gaussian noise n
through the relation zσ = z + n where n ∼ N (0, σ2I).
Similar to Karras et al. [32], we aim to learn the score func-
tion ∇zσ

log p(zσ;σ) that defines the reverse diffusion pro-
cess:

dzσ = −2σ∇zσ log p(zσ;σ) dt+
√
2σ dw (2)

where dw is the Wiener process. This score function
∇zσ log p(zσ;σ) = (Dθ(zσ;σ)− zσ)/σ

2 can be expressed
via a denoising function Dθ parametrized by a 3D U-Net.
The neural network is trained by minimizing the clean data
prediction objective L = Eσ,z,n

[
ω(σ)∥Dθ(zσ;σ)− z∥22

]
,

with ω(σ) balancing loss contributions across noise levels.

3.2. Guidance via Anatomical Potential Functions
We assume the voxel map V contains K substructures
Sk ∈ [0, 1]α×β×γ of interest, where α, β, γ are grid size
dimensions. Substructures represent anatomical regions of
interest that may be comprised of single tissues (e.g., cross-
sectional slices of an aorta) or combinations thereof (e.g.,
left and right atria). As shown in Fig. 2, each substructure
can be measured in terms of geometric properties (mass,
position, size, shape, orientation) and topological properties
(connectivity, presence of loops or voids).
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Figure 3. Efficient parsing of anatomical substructures during diffusion guidance. A: During guidance, we parse relevant substructures
directly from the clean latent prediction with a neural field decoder (L-parsing). B: In coarse L-parsing, we use a coarse grid to decode
globally defined substructures at low spatial resolution. C: In localized L-parsing, we use a similar grid size but spatially transform the
template point grid to decode localized substructures at high spatial resolution.

Differentiable Geometric Measurement Given a single
parsed substructure Sk, we aim to differentiably extract the
geometric moments by numerically integrating the zeroth,
first, and second-order moments of the substructure. Here,
the zeroth moment represents the mass mk ∈ R, the first
moment represents the centroid pk ∈ R3, and the sec-
ond moment represents the covariance matrix Σk ∈ R3×3.
To do this, we follow Kadry et al. [29], but instead com-
pute the moments for substructures inside arbitrarily sized
cuboidal control domains, rather than globally. We first de-
fine Ωk ∈ R(αβγ)×1 as the flattened substructure voxel grid
Sk and rk ∈ R(αβγ)×3 as the normalized voxel coordinates
between 0 and 1. The moments are then computed as:

mk = 1T ·Ωk and pk =
ΩT

k rk
mk

,

Σk =
1

mk
rTk diag(Ωk) rk − pkp

T
k . (3)

Here, 1T is the all-ones vector, and diag(·) refers to diago-
nal matrix embedding.
Geometric Decomposition and Size Normalization As
the covariance matrix implicitly contains information on
mass, we aim to obtain a scale-normalized covariance ma-
trix that relates only to orientation and relative aspect ra-
tios. We decompose the covariance as Σk = UkΛ̃kU

T
k =

vkUkΛkU
T
k , where size vk ∈ R = tr(Σk) is the trace of the

covariance matrix, shape Λk ∈ R3×3 = Λ̃k/vk is the eigen-

value matrix Λk normalized by the trace, and orientation
Uk ∈ R3×3 is an orthonormal matrix. We thus define the
scale-normalized covariance matrix as Σn

k = UkΛkU
T
k .

Geometric Potential Functions After computing the geo-
metric features, we aim to penalize the deviations from the
target geometric features Ḡk through a geometric poten-
tial function Lgeo

k . We formulate this potential function as a
weighted combination of mean squared error losses LMSE:

Lgeo
k = λ0LMSE(mk, m̄k) + λ1LMSE(pk, p̄k)

+λ2LMSE(Σ
n
k , Σ̄

n
k ). (4)

Here, [λ0, λ1, λ2] are the weighting factors for the mass,
position, and normalized covariance losses, respectively.
Adaptive Mass Weighting Given that geometric features
are now defined locally, rather than globally, our potential
functions must account for numerical instability in the cen-
troid and covariance-based losses resulting from empty vox-
els. We address this by adaptively setting λ1 = λ2 = 0
when the mass is below a specified threshold.
Differentiable Topological Measurement We use persis-
tent homology (PH) to measure the presence of topologi-
cal features within the substructure Sk considered as a cu-
bical complex, similar to Gupta et al. [21]. We consider
super-level sets of Sk, which are the set of voxels above a
threshold value τ . By decreasing τ , we obtain a filtration



of nested sets, all of which are used to extract topological
features such as connected components (0D features), loops
(1D features), and voids (2D features). The output of this
process is a set of persistence points p ∈ Xk which include
the birth b and death d thresholds for all topological fea-
tures. Intuitively, persistent features have a large interval
between their birth and death thresholds. We use the Cubi-
cal Ripser library [31] to compute the PH of Sk.
Softmax Temperature Tuning As our substructure is de-
rived from softmaxed multi-class probability maps, we
found that the gradient of the topological potential was too
low in regions where the probability was close to 0 or 1. To
address this, when decoding the substructure from the latent
space, we apply softmax with an increased temperature for
topological guidance, enabling the gradient to pass through
during backpropagation.
Topological Potential Functions To enforce topological
structures within Sk during the reverse diffusion process,
we partition the persistence set into disjoint sets Xk =
Yk ∪Zk consisting of points that should be preserved Yk or
suppressed Zk based on a topological prior Bk ∈ R3, which
specifies the desired features for the components, loops, and
voids, respectively. To differentiably compute the topologi-
cal potential, we sample the voxel intensities from Sk at the
birth rpb and death rpd coordinates for each persistence point
p. We then maximize or minimize the persistence of each
feature through the following potential functions:
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Figure 4. Geometric Control Tasks. We define a variety of rel-
evant tasks by varying the selected tissues, template domain grid
size, and control domain-specific spatial transforms.

Ltopo
k = −

∑
p∈Yk

|Sk(r
p
b )− Sk(r

p
d)|

2︸ ︷︷ ︸
Preserve Loss

+
∑

p∈Zk
|Sk(r

p
b )− Sk(r

p
d)|

2︸ ︷︷ ︸
Suppress Loss

. (5)

Gradient-Based Guidance Following Kadry et al. [29],
we guide the diffusion process using the gradient derived
from anatomical potential functions. At each sampling
step, we first denoise the intermediately noised latent zσ
to obtain a clean latent prediction ẑ0 = Dθ(zσ;σ), which
is then parsed into K substructures Sk as described in
Sec. 3.3. We compute a composite anatomical potential
L = 1

K

∑
k(λgeoLgeo

k + λtopoLtopo
k ) where λgeo and λtopo

weight the geometric and topological potentials (Fig. 3, top
row). The guided denoising step is then applied as follows:

Dw
θ (zσ;σ)︸ ︷︷ ︸

Guided Denoising

= Dθ(zσ;σ)︸ ︷︷ ︸
Uncond. Denoising

− σ2 · ∇zσ
L︸ ︷︷ ︸

Anatomical Guidance

. (6)

3.3. Substructure Parsing for Diffusion Guidance
Voxel-Space Parsing Given a predicted voxel-space seg-
mentation map V̂, we can parse K substructures Sk with
voxel-space substructure parsing (Fig. 2), which we will re-
fer to as V-parsing. V-parsing extracts a substructure by
first using the boolean subset operator U [u] : RC → R;
parametrized by a selection vector u ∈ {0, 1}C for ele-
mentwise extraction and recombination of tissues from V̂
into a structure voxel map Ŝk. By taking different tis-
sue combinations, we enable the control of various struc-
tures within the segmentation. The structure slicing oper-
ator T s[Xk] : R → R then samples voxelwise intensity
values from Ŝk at locations specified by a cuboidal con-
trol domain Xk ∈ Rα×β×γ×3 discretized into a lattice-like
point grid. The final relation is given by:

Sk = T s[Xk]︸ ︷︷ ︸
Slice Structure

◦ U [u](V̂)︸ ︷︷ ︸
Subset Voxel

. (7)

Spatial Transformation of Template Domains Control
domains Xk are obtained by spatially transforming a tem-
plate point grid Xtemp

k ∈ Rα×β×γ×3 using affine transfor-
mation parameters Ak = [Rk, sk, tk], where Rk ∈ R3×3 is
a rotation matrix, sk ∈ R3 is a scaling vector, and tk ∈ R3

is a translation vector. The spatial transformation is defined
as:

Xk = Rk diag(sk)X
temp
k + tk. (8)

This formulation enables flexible substructure parsing
across multiple design axes (Fig. 4). For example, the tem-
plate grid size controls the discretization (coarse to fine)
and dimensionality (3D to 1D) of the parsed substructure.
The affine parameters Ak can be defined based on custom
coordinate systems and enable the localization of substruc-
tures under varying extents, orientations, and positions in
3D space.
Latent-Space Parsing Rather than decoding the entire
voxel grid and subsequently slicing out substructures, we
propose to use neural field decoders to directly parse sub-
structures from latent space (L-parsing). This is accom-
plished by applying the latent slicing operator T l[Xk] on



the clean predicted latents ẑ0 followed by the neural field
decoder F [Xk] and the boolean subset operator U [u]:

Sk = U [u]︸︷︷︸
Subset Voxel

◦ F [Xk]︸ ︷︷ ︸
Decode Latent

◦ T l[Xk](ẑ0)︸ ︷︷ ︸
Slice Latent

. (9)

Partial Decoding Strategies Neural field representations
offer a key advantage in that they enable decoding from ar-
bitrary point sets. We introduce two L-parsing strategies
that apply partial decoding by using point grids with small
grid sizes, enabling fast guidance at inference time. To effi-
ciently measure global-level anatomical properties that are
invariant to spatial resolution, we apply coarse L-parsing
by using a template grid Xtemp

k with a low grid discretiza-
tion [α < H, β < W, γ < D] and setting the identity-like
affine transformation parameters Acoarse = [I,1,0] (Fig. 3
bottom left). To efficiently measure anatomical properties
that are defined locally, we apply localized L-parsing by
using a similarly low template grid discretization, but spa-
tially transform the template point grid Xtemp

k into a local-
ized region, effectively achieving a high spatial resolution
(Fig. 3 bottom right).

4. Experiments
4.1. Anatomical Datasets
For the cardiac dataset, we extract heart-related labels
from the TotalSegmentator dataset [46], resulting in 596
11-channel segmentations. For the aortic dataset, we ex-
tract aorta-related labels from the TotalSegmentator dataset,
resulting in 450 7-channel segmentations. For the spinal
dataset, we extract spinal vertebrae-related labels from the
CTSpine1k dataset [10], resulting in 784 25-channel seg-
mentations. For the coronary dataset, we extract coronary
artery-related labels from the DISRUPT-CAD dataset [45],
resulting in approximately 360 unique 4-channel segmen-
tations. All segmentations were resampled to a uniform
resolution of 1283, and were partitioned into training and
validation sets with an 80/20 split.

4.2. Control Tasks
Geometric Control To evaluate geometric control, we use
the cardiac validation set to determine appropriate target
control domains and target geometric features (see Fig. 4).
The first task is Right Ventricle, which constrains the right
ventricle within a volumetric domain. The second task is
Mitral Valve, which constrains two volumetric domains at
the intersection of the left ventricle and atrium. The third
task is Aortic Trunk, which constrains 5 planar domains
along the aortic trunk centerline. The fourth task is My-
ocardium Wall, which constrains 4 linear domains ema-
nating from the centroid of the myocardium. All quantita-
tive experiments were conducted by sampling 128 synthetic
samples.
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Figure 5. Qualitative evaluation of geometric control exper-
iments. We generate anatomical segmentations based on target
domains (black frames) and geometric features (red ellipsoids) for
four cardiac tasks. Sample geometry shown as green ellipsoids.

Topological Control To evaluate topological control, we
define a task for each anatomical dataset. We set a global
target control domain as well as appropriate topological pri-
ors for each task: Atria Separation enforces 2 connected
components for the left and right atria; Branch Connectiv-
ity enforces 1 connected component for the ascending aorta
and all branches; Vertebrae Connectivity enforces 1 con-
nected component and 9 loops for five thoracic spinal ver-
tebrae (T6-T10); and Calcium Count enforces 2 calcium
components in the coronary artery wall.

Table 1. Comparison of geometric control task approaches.

Approach Decoder Parsing Control Method

Explicit Neural Field N/A Conditioning
Implicit Neural Field N/A Conditioning

Anatomica-V Convolutional V-parsing Guidance
Anatomica-L Neural Field L-parsing Guidance

4.3. Implementation Details
As Anatomica guides the unconditional sampling process
for each task in a training-free manner, we only train a
separate unconditional diffusion model for each anatomi-
cal dataset. We present two variants of Anatomica that uti-
lize different decoding and parsing strategies for guidance
(Tab. 1). Anatomica-V uses a convolutional decoder to first
produce a global voxel grid from the predicted clean la-



Table 2. Quantitative results for geometric control tasks. We
report geometric fidelity and generation quality for each task-
approach combination. Fidelity values for mass, centroid, and co-
variance are multiplied by 1e5, 1e4, 1e5 respectively.

Geometric Fidelity (↓) Generation Quality (↓)

Task Approach Mass Cent. Cov. FMD 1-NNA

Right
Vent.

Explicit 154.5 227.1 101.4 164.7 0.761
Implicit 60.6 51.0 30.6 156.3 0.593

Anatomica-L 17.5 48.6 22.1 93.7 0.566
Anatomica-V 12.3 30.2 21.6 84.9 0.590

Mitral
Valve

Explicit 29.0 246.5 37.4 97.1 0.577
Implicit 8.91 87.0 17.3 314.8 0.661

Anatomica-L 3.22 11.4 7.89 88.8 0.577
Anatomica-V 3.81 41.4 7.99 93.8 0.586

Aortic
Trunk

Explicit 2.53 272.6 13.9 114.3 0.587
Implicit 0.81 35.2 5.30 104.8 0.565

Anatomica-L 2.38 86.0 16.2 89.8 0.580
Anatomica-V 2.40 84.9 14.4 82.0 0.561

Myo.
Wall

Explicit 1.01 123.4 3.39 130.7 0.574
Implicit 0.48 22.3 1.67 111.0 0.558

Anatomica-L 0.29 34.6 1.87 86.4 0.609
Anatomica-V 0.36 42.3 1.93 97.3 0.554

tents, upon which we extract localized substructures during
guidance with V-parsing. In contrast, Anatomica-L uses
a neural field decoder to directly parse substructures with
L-parsing. For the geometric control tasks, we use local L-
parsing, while the topological tasks use coarse L-parsing.
Unless specified otherwise, we use 100 diffusion sampling
steps.

4.4. Baselines

We also compare our general approach of guiding uncondi-
tional diffusion models against approaches that require con-
ditional training for each task (Tab. 1). For the geometric
control tasks, we implement conditional baselines to con-
trol target geometric features representing the size m, cen-
troid p, and covariance Σ of each substructure within the
task. The first baseline is Explicit Conditioning, where
we directly encode geometric attributes as scalar values in
the conditioning signal [28, 30]. We flatten and stack all
geometric moments (mass, centroid, covariance) into a 13-
dimensional vector for all K substructures. We then expand
this vector into a voxel grid Gexp ∈ R13×K×h×w×d which
is concatenated to the latent grid z along the channel di-
mension. The second is Implicit Conditioning, where we
indirectly encode geometric attributes in the concatenated
conditioning signal through 3D heatmaps [30]. Here, we
embed the geometric moments (centroid, covariance) as 3D
Gaussians in voxel space. For each substructure, we create
a voxel map Gimp ∈ RK×h×w×d where the voxel values
encode the Mahalanobis distance.
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Figure 6. Qualitative evaluation of topological control exper-
iments. We generate anatomical segmentations based on target
topological priors for four anatomical datasets.

Table 3. Quantitative evaluation for topological control tasks.
We report Betti precision for number of connected components
B0, loops B1, and voids B2, and generation quality (1-NNA) for
each approach.

Topo. Precision (%) Gen. Qual.

Task Approach B0 (↑) B1 (↑) B2 (↑) 1-NNA (↓)

Atrial
Sep.

Uncond. 7.81 5.47 56.2 0.578
Anatomica-L 78.9 89.1 97.7 0.606

Branch
Conn.

Uncond. 55.5 12.5 63.3 0.559
Anatomica-L 77.3 17.2 64.1 0.532

Vert.
Conn.

Uncond. 28.9 8.59 12.5 0.518
Anatomica-L 74.2 26.6 7.03 0.537

Calcium
Count

Uncond. 0.00 2.34 95.3 0.653
Anatomica-L 60.9 79.7 98.4 0.618

4.5. Evaluation Metrics

We measure morphological quality metrics by measuring
the Fréchet morphological distance (FMD) [27] between
real and synthetic distributions in morphological space. To
compute such features, we consider all tissues as substruc-
tures and concatenate all masses, centroids, and normalized
eigenvalues. We average the per-tissue 1-nearest neighbor
accuracy (1-NNA) to compare point cloud distributions us-
ing the Earth Mover’s Distance (EMD) [48]. We evaluate
geometric control fidelity by taking the L1-norm between
the target and measured moments. Lastly, to measure topo-
logical control fidelity, we compute the topological preci-
sion for components B0, loops B1, and voids B2 as the



fraction of samples with the correct Betti number.

4.6. Results
Precise Geometric Control We quantitatively evaluate ge-
ometric control on the cardiac dataset with four different
tasks. We see in Tab. 2 and Fig. 5 that our inference-time
approach (Anatomica) is competitive in controlling the size,
shape, position, and orientation of various substructures in
the cardiac dataset. The closest baseline is the specialized
implicit concatenation method, which requires conditional
retraining for every task.

Spinal

Aorta

Myo.
Wall

Vessel
Wall

Small Domains Large Domains

Figure 7. Multi-scale geometric control of various anatomi-
cal substructures over different coordinate systems. We gener-
ate anatomical segmentations based on domain size and anatomi-
cally relevant coordinate systems (Cartesian, curvilinear, cylindri-
cal, and spherical).

Topological Control We evaluate topological control on
four anatomical datasets. We see in Tab. 3 and Fig. 6 that
our framework is able to control the number of connected
components and loops for various types of anatomical struc-
tures. Adherence to the number of voids is not improved for
the aortic and vertebrae datasets, possibly due to the exis-
tence of single-voxel voids that are not easily detected at
coarser measurement resolutions.
Multi-scale Geometric Control We demonstrate Anatom-
ica’s flexibility for geometric control across multiple
anatomical types including the cardiac, aortic, spinal, and
coronary datasets. As shown in Fig. 7, our framework
handles varying spatial scales (large to small control do-
mains) and operates across different coordinate system
types (Cartesian, cylindrical, and spherical).

Partial Decoding Ablation We evaluate the speed-fidelity
trade-off for partial decoding guidance under various de-
coding resolutions and strategies. We use the geometric
control task involving the right ventricle for evaluation.
We see in Tab. 4 that low-resolution partial decoding with
Anatomica-L maintains geometric fidelity while achieving
substantial speedups against high-resolution decoding. We
also find that given the same decoding resolution, using
a neural field decoder (Anatomica-L) increases sampling
speed at the cost of slightly reduced geometric fidelity, as
compared to convolutional decoders (Anatomica-V).

Table 4. Quantitative ablation study for partial decoding
strategies. We evaluate the geometric fidelity and generation qual-
ity, and sampling speed for different decoding strategies and res-
olutions. Speed is measured in terms of sampled label maps per
second using the maximum allowable batch size on a single GPU,
normalized to the slowest method. Fidelity values for mass, cen-
troid, and covariance are multiplied by 1e5, 1e4, 1e5 respectively.

Methodology Geometric Fidelity (↓) Gen. Qual. (↓) Speed (↑)

Approach Domain Res. Mass Cent. Cov. FMD 1-NNA Speed

Anatomica-L

Local
High 17.02 48.14 21.85 91.16 0.57 2.48
Med. 16.64 48.41 22.03 93.89 0.58 7.43
Low 16.43 48.75 22.07 105.57 0.55 10.40

Coarse
High 17.50 48.58 22.77 114.62 0.55 2.08
Med. 17.75 48.78 23.03 119.93 0.53 7.43
Low 20.30 46.96 25.60 123.31 0.54 10.40

Anatomica-V Global High 11.95 30.66 21.92 84.70 0.58 1.00

5. Discussion

Limitations The main limitation of our guidance approach
is that loss weightings should be tuned to balance the con-
tributions of each constraint. However, we found that
our choice of weights transfers readily between the four
anatomical datasets we consider in this study. Moreover,
we found that computing persistent homology at high res-
olution is computationally demanding and limits the coarse
decoding resolution for topological guidance.
Conclusion We propose an inference-time framework for
controlling generative models of anatomical voxel maps
based on localized geo-topological attributes. Our design
space centers on cuboidal control domains that composi-
tionally slice out substructures across varying dimensions
and coordinate systems. Over these domains, we propose
the use of geo-topological potential functions for diffusion
guidance, as well as neural field decoders for efficient par-
tial decoding from latent space. We demonstrate state-
of-the-art performance for geometric and topological con-
trol across a variety of anatomical systems and structures.
We believe this work opens new avenues for controllable
anatomical generation, with applications to virtual clinical
trials and synthetic data augmentation for machine learning.
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Anatomica: Localized Control over Geometric and Topological Properties for
Anatomical Diffusion Models

Supplementary Material

6. Overview
Methods In Sec. 7, we detail the methods relating to
diffusion model training, substructure parsing, and geo-
topological measurement.
Experimental Details In Sec. 8, we provide additional de-
tails on dataset creation, task setup, and evaluation metrics.
Ablations In Sec. 9, we study the influence of various hy-
perparamters such as individual loss weightings, decod-
ing resolutions, and softmax temperature for geometric and
topological guidance.

7. Methodological Details
7.1. Variational Autoencoder
For this study, we adapt the voxel map VAE architecture
specified by Kadry et al. [29], which consists of a convo-
lutional encoder and decoder. All architectural and training
hyperparameters can be found in tables 5 and 6.
Decoder Architecture We introduce two variants of
Anatomica for latent diffusion guidance, with the primary
difference being the decoder architecture that converts la-
tent grid representation z ∈ Rc×h×w×d into a voxel grid
representation V̂ ∈ RC×H×W×D that can be anatomically
characterized. Anatomica-V uses a convolutional decoder
that mirrors the encoder, where the latent grid can only
be decoded to full voxel resolution. On the other hand,
Anatomica-L uses a neural field-based decoder that takes
as input an arbitrary point grid Xq ∈ RH×W×D×3 and
returns for each point, the probability vector denoting the
most likely anatomical class.
Neural Field Decoder Our decoder F decodes voxel maps
with neural fields by first applying a bottleneck convolu-
tion to the latent grid representation in order to aggregate
features within a local neighborhood. We then use a set of
query points to interpolate into the latent grid representa-
tion using the slice operator T l[Xq] to create a set of latent
points which are then point-wise concatenated with random
Fourier features [36, 43]. These features are then fed into a
multi-layer perceptron (MLP) which consists of several hid-
den layers and finally outputs a logit vector for each query
point. The logit vectors are then softmaxed to produce a
segmentation probability vector.
Training We train all autoencoders with a combination of
Dice-Cross Entropy reconstruction loss and KL divergence
loss [28]. For neural field decoder training, we decode back
to the full resolution global voxel grid with a query point
grid Xq ∈ RH×W×D×3.

Table 5. Autoencoder architecture hyperparameters

Conv. Encoder (shared) Value
Num. Channels [64, 128, 256]
Num. Res. Blocks 2
Final Downscaling Factor 4
Bottleneck Dim 3

Conv. Decoder (Anatomica-V) Value
Num. Channels [64, 128, 256]
Num. Res. Blocks 2
Final Upscaling Factor 4

Neural Field Decoder (Anatomica-L) Value
Bottleneck Conv. Channels 64
Positional Encoding Dim 10
Positional Encoding Bandwidth 1
MLP Hidden Dim 128
MLP Num Layers 3
Normalization LayerNorm
Activation ReLU

Table 6. Autoencoder training hyperparameters

Hyperparameter Value
Learning Rate 1× 10−5

Epochs 40
Batch Size 1
Dice-CE Loss Weight 1
KL Loss Weight 1× 10−6

7.2. Latent Diffusion Model

Architecture & Training For latent diffusion model archi-
tecture and training, we follow the formulation and archi-
tecture specified by Kadry et al. [29]. All architectural
and training hyperparameters can be found in table 7. Our
denoising model Dθ is parametrized in a skip-connection
manner with a U-Net Kθ with a convolutional encoder and
decoder through the following relation:

Dθ(zσ;σ) = cskip(σ) zσ

+ cout(σ)Kθ

(
cin(σ) zσ; cnoise(σ)

) (10)



Where (cskip,cout,cin,cnoise) are noise-level-dependent scaling
coefficients [32], σ is the noise level. We use the same hy-
perparameters for the scaling coefficients as in Karras et al.
[32], but sample our noise level p(σ) from a lognormal dis-
tribution with different parameters (see table 7).
Sampling Once the denoiser has been sufficiently trained,
we define a specific noise level schedule governing the re-
verse process, in which the initial noise level, σ, starts at
σmax and decreases to σmin:

σi =

(
σ

1
ρ
max +

i

N − 1
(σ

1
ρ

min − σ
1
ρ
max)

)ρ

(11)

where ρ, σmin and σmax are hyperparameters defined in ta-
ble 7. We specifically use the stochastic sampling method
proposed in Karras et al. [32] (see Tab. 7 for hyperparame-
ters).

Table 7. Diffusion model hyperparameters

Training Value
lr 2.5× 10−5

Epochs 50
Batch Size 1

Num. Channels [64, 128, 196]
Num. Res. Blocks 2
Num. Attn. Heads 1

Attn. Res. 8, 4, 2
σdata 1

p(σ) mean 1
p(σ) std 1.2

Sampling Value
σmin 1× 10−2

σmax 80
ρ 1

7.3. Substructure Parsing
Anatomica revolves around parsing substructures through
the use of selection vectors and control domains, enabling
the measurement of anatomical properties for specified tis-
sues within localized regions of interest. Selection vectors
are binary vectors u ∈ {0, 1}C which select a subset of
tissues from a voxel grid V through the Boolean subset
operator U [u] (see Algorithm 1). By varying the Boolean
selection vector, we enable the measurement of anatomic
structures that are composed of multiple tissue types. Con-
trol domains are instantiated as point grids X ∈ Rα×β×γ×3

that are used to parse substructures from grid-like represen-
tations such as voxel grids V using the voxel slicing op-

erator T s[X] with V-parsing (see Algorithm 2). Alterna-
tively, we can parse substructures directly from the latent
representation z using the latent slicing operator T l[X] with
L-parsing (see Algorithm 3). To obtain control domains,
we first define a template domain Xtemp ∈ Rα×β×γ×3 as a
point grid centered at 0, with a grid size g = [α, β, γ]. We
then apply a spatial transformation defined by affine trans-
formation parameters A = [R, s, t] to obtain anatomically
relevant control domains.

Algorithm 1 Boolean Subset Operator

Require: V ∈ RC×H×W×D ▷ Voxel map
Require: u ∈ {0, 1}C ▷ Boolean selection vector

1: Ŝ← 0 ▷ Initialize
2: for tissue i where ui = 1 do
3: Ŝ← max(Ŝ,Vi) ▷ Union via maximum
4: end for
5: return Ŝ ∈ RH×W×D

Algorithm 2 Voxel Substructure Parsing (V-parsing)

Require: V ∈ RC×H×W×D ▷ Voxel map
Require: u ∈ {0, 1}C ▷ Selection vector
Require: {Xk}Kk=1 where Xk ∈ Rα×β×γ×3 ▷ Control domains

1: Subset Tissues
2: Ŝ← U [u](V) ∈ RH×W×D ▷ Boolean subset

3: Parse Substructures
4: for k = 1, . . . ,K do
5: Sk ← T s[Xk](Ŝ) ∈ Rα×β×γ ▷ Voxel slice
6: end for
7: return {Sk}Kk=1

Algorithm 3 Latent Substructure Parsing (L-parsing)

Require: z ∈ Rc×h×w×d ▷ Latent representation
Require: u ∈ {0, 1}C ▷ Selection vector
Require: {Xk}Kk=1 where Xk ∈ Rα×β×γ×3 ▷ Control domains

1: Parse Substructures
2: for k = 1, . . . ,K do
3: zk ← T l[Xk](z) ∈ Rc×α×β×γ ▷ Latent slice
4: Sk ← U [u] ◦ F [Xk](zk) ∈ Rα×β×γ ▷ Decode & subset
5: end for
6: return {Sk}Kk=1

7.4. Control Domains
Anatomica supports several methods for defining control
domains Xk, each useful for probing different anatomical
or geometric properties. In this study, we primarily compute
control domain parameters from real anatomical voxel maps
and measure geometric properties within such domains to
define targets for diffusion guidance. This approach is not
limited to guidance use-cases, and can potentially be used



for other machine-learning tasks that use differentiable loss
functions. We now detail the algorithmic procedures for
computing control domain parameters across different co-
ordinate systems from anatomical voxel maps.

Global Domain Computation The global control domain
can be used to measure properties over the entire voxel
grid without geometric feature extraction at a variable spa-
tial resolution. We compute global domains through Algo-
rithm 4.

Algorithm 4 Global Domain Computation

Require: (α, β, γ) with α ≈ β ≈ γ ▷ Volumetric grid size

1: Set Affine Parameters
2: R← I ∈ R3×3 ▷ Rotation
3: t← 0 ∈ R3 ▷ Translation
4: s← 1 ∈ R3 ▷ Scale
5: return A = [R, s, t]

Cartesian Domain Computation Cartesian domains en-
able the measurement of anatomical properties within lo-
calized bounding boxes that contain structures of interest.
We compute Cartesian domains through Algorithm 5.

Algorithm 5 Cartesian Domain Computation

Require: u ∈ {0, 1}C ▷ Tissue selection vector
Require: (α, β, γ) with α ≈ β ≈ γ ▷ Volumetric grid size

1: Extract Bounding Box
2: Ŝ← U [u](V), S̃← I[Ŝ > 0.9] ▷ Subset & binarize
3: rupper, rlower ← ExtractLimits(S̃) where rupper, rlower ∈ R3

4: Set Affine Parameters
5: R← I ∈ R3×3 ▷ Rotation
6: t← (rupper + rlower)/2 ∈ R3 ▷ Translation
7: s← (rupper − rlower)⊘ [α, β, γ]T ∈ R3 ▷ Scale
8: return A = [R, s, t]

Interface Domain Computation Interface domains enable
the measurement of local anatomical properties at the in-
terfacial region between two or more structures, such as
valve annuli or branch points. We compute interface do-
mains through Algorithm 6.

Algorithm 6 Interface Domain Computation

Require: uA,uB ∈ {0, 1}C ▷ Tissue selection vectors
Require: (α, β, γ) with α≪ β ≈ γ ▷ Planar grid size
Require: kdil, Rr ∈ R3×1 ▷ Kernel size, ref vector

1: Extract Interface Regions
2: ŜA ← U [uA](V), ŜB ← U [uB ](V) ▷ Subset
3: ŜA

dil ← maxpoolkdil
(ŜA), ŜB

dil ← maxpoolkdil
(ŜB) ▷ Dilate

4: M← min(ŜA
dil, Ŝ

B
dil) ▷ Combine

5: ŜA
int ← ŜA ⊙M, ŜB

int ← ŜB ⊙M ▷ Mask interface

6: Compute Interface Frame Orientations
7: pA,pB ← Centroid(ŜA

int),Centroid(ŜB
int) ▷ (Alg. 12)

8: Rα ← (pB − pA)/∥pB − pA∥ ∈ R3×1 ▷ Interface vector
9: Rβ ,Rγ ← Orthonorm.(Rα,Rr) ∈ R3×1 ▷ (Alg. 11)

10: Set Affine Parameters
11: R← [Rα,Rβ ,Rγ ] ∈ R3×3 ▷ Rotation
12: s← [α/H, β/W, γ/D]T ∈ R3 ▷ Scale
13: tA ← pA ∈ R3, tB ← pB ∈ R3×1 ▷ Translation
14: return AA = [R, s, tA], AB = [R, s, tB ]

Curvilinear Domain Computation Curvilinear domains
enable the measurement of cross-sectional anatomical prop-
erties along tubular structures such as blood vessels. We
compute curvilinear domains through Algorithm 7. For
skeletonization, we follow the methods and hyperparame-
ters detailed in Kadry et al. [28] for non-differentiable hard
skeletonization.

Algorithm 7 Curvilinear Domain Computation

Require: u ∈ {0, 1}C ▷ Tissue selection vector
Require: (α, β, γ) with α≪ β ≈ γ ▷ Planar grid size
Require: isub, Rr ∈ R3×1 ▷ Subsampling Indices, Ref vector

1: Extract Centerline
2: Ŝ← U [u](V), S̃← I[Ŝ > 0.9] ▷ Subset & binarize
3: C← Skeletonize(S̃) where C ∈ RNcenter×3

4: Compute Curvilinear Frames
5: Fα ← FiniteDifference(C) ∈ RNcenter×3 ▷ Tangent vectors
6: Fβ

0 ,F
γ
0 ← Orthonorm.(Fα

0 ,R
r) ▷ (Alg. 11)

7: Fβ ,Fγ ← ParallelTransport(Fα,Fβ
0 ,F

γ
0 ) ▷ (Alg. 10)

8: Csub ← Subsample(C, isub) where Csub ∈ RNplanes×3

9: Rα,Rβ ,Rγ ← Subsample(Fα,Fβ ,Fγ , isub) ∈ RNplanes×3

10: Set Affine Parameters
11: for domain k = 1, . . . , Nplanes do
12: Rk ← [Rα

k ,R
β
k ,R

γ
k ] ∈ R3×3 ▷ Rotation

13: sk ← [α/H, β/W, γ/D]T ∈ R3 ▷ Scale
14: tk ← Csub

k ∈ R3 ▷ Translation
15: end for
16: return {Ak}

Nplanes
k=1

Spherical Domain Computation Spherical domains en-
able the measurement of radial anatomical properties of
shell-like structures such as myocardial walls. We compute
spherical domains through Algorithm 8. Instead of sam-



pling equidistant points in polar and azimuthal space, we
compute equally distributed points on the sphere surface us-
ing the Fibonacci lattice algorithm [18].

Algorithm 8 Spherical Domain Computation

Require: u ∈ {0, 1}C ▷ Tissue selection vector
Require: (α, β, γ) with α ≈ β ≪ γ ▷ Ray-like grid size
Require: Nrays, Nq , Rr ∈ R3×1 ▷ Number of rays, query ray

resolution, ref vector

1: Generate Radial Directions
2: Ŝ← U [u](V) ▷ Subset tissues
3: p← Centroid(Ŝ) ∈ R3 ▷ (Alg. 12)
4: Rγ ← FibonacciLattice(Nrays,p) where Rγ ∈ RNrays×3

5: Rβ ,Rα ← Orthonorm.(Rγ ,Rr) ∈ RNrays×3 ▷ (Alg. 11)

6: Find Wall Centroids and Set Affine Parameters
7: for domain k = 1, . . . , Nrays do
8: Xray

k ← MakeQueryRay(p,Rγ
k , Nq) where Xray

k ∈
R1×1×Nq×3

9: Sray
k ← T

s[Xray
k ](Ŝ) ▷ Slice along ray

10: pwall,k ← Centroid(Sray
k ) ∈ R3 ▷ (Alg. 12)

11: Rk ← [Rα
k ,R

β
k ,R

γ
k ] ∈ R3×3 ▷ Rotation

12: sk ← [α/H, β/W, γ/D]T ∈ R3 ▷ Scale
13: tk ← pwall,k ∈ R3 ▷ Translation
14: end for
15: return {Ak}

Nrays
k=1

Cylindrical Domain Computation Cylindrical domains
enable the measurement of radial anatomical properties of
walled tubular structures such as coronary arteries. We
compute cylindrical domains through Algorithm 9. We
compute cylindrical domains by defining equidistant ray
centers along the z-axis and equally sampling the polar di-
rections according to predefined sampling resolutions.

Algorithm 9 Cylindrical Domain Computation

Require: u ∈ {0, 1}C ▷ Tissue selection vector
Require: (α, β, γ) with α ≈ β ≪ γ ▷ Ray-like grid size
Require: Nz , Nθ , Nq , Rr ∈ R3×1 ▷ Z-levels, angles, query ray

resolution, ref vector

1: Generate Cylindrical Directions
2: Ŝ← U [u](V) ▷ Subset tissues
3: Rγ ← CylindricalLattice(Nz, Nθ) where Rγ ∈ RNrays×3,

Nrays = Nz ×Nθ

4: Rβ ,Rα ← Orthonorm.(Rγ ,Rr) ∈ RNrays×3 ▷ (Alg. 11)

5: Find Wall Centroids and Set Affine Parameters
6: for domain k = 1, . . . , Nrays do
7: Xray

k ← MakeQueryRay(Rγ
k , Nq) where Xray

k ∈
R1×1×Nq×3

8: Sray
k ← T

s[Xray
k ](Ŝ) ▷ Slice along ray

9: pwall,k ← Centroid(Sray
k ) ∈ R3 ▷ (Alg. 12)

10: Rk ← [Rα
k ,R

β
k ,R

γ
k ] ∈ R3×3 ▷ Rotation

11: sk ← [α/H, β/W, γ/D]T ∈ R3 ▷ Scale
12: tk ← pwall,k ∈ R3 ▷ Translation
13: end for
14: return {Ak}

Nrays
k=1

Parallel Transport Procedure For curvilinear coordinate
systems, we aim to maintain consistent frame orientations
as we move along the centerline. To do this, we apply par-
allel transport by propagating an initial orthonormal frame
along a centerline using the Rodrigues rotation formula.

Algorithm 10 ParallelTransport

Require: F1 ∈ RNcenter×3 ▷ Normalized tangent vectors
Require: F2

0,F
3
0 ∈ R3 ▷ Initial normalized frame vectors

1: for i = 1, . . . , Ncenter − 1 do
2: ai ← (F1

i−1 × F1
i )/∥F1

i−1 × F1
i ∥ ▷ Rotation axis

3: θi ← cos−1(F1
i−1 · F1

i ) ▷ Rotation angle
4: F2

i ,F
3
i ← Rodrigues(F2

i−1,F
3
i−1,ai, θi)

5: end for
6: return F2,F3 ∈ RNcenter×3

Orthonormalization Procedure For interface, curvilinear,
spherical, and cylindrical coordinate systems, we wish to
compute a set of orthonormal frame vectors from an initial
vector. To do this, we define an arbitrary reference vector
Rr and compute orthonormal frame vectors from a primary
direction vector by taking successive cross products. For
numerical stability, we use an alternate reference vector if
the reference and initial vectors are perfectly aligned.



Algorithm 11 Orthonormalization

Require: U0 ∈ R3×1 ▷ Primary direction vector
Require: Rr ∈ R3×1 ▷ Reference vector

1: U1 ← (U0 ×Rr)/∥U0 ×Rr∥ ∈ R3×1 ▷ Second frame
vector

2: U2 ← U0 ×U1 ∈ R3×1 ▷ Third frame vector
(auto-normalized)

3: return U1,U2

7.5. Geometric Measurement & Guidance

Scale Standardization of Mass We normalize the mea-
sured mass mk by the total number of voxels in the con-
trol domain αβγ in order to remain invariant to control do-
main discretization, allowing us to maintain similar geomet-
ric loss weightings across different discretization levels.

Local to Global Transformation of Moments Our geo-
metric moment formulation can be sensitive to control do-
main discretization and coordinate system choice. For ex-
ample, our substructure can inhabit 80% of the control do-
main, but the control domain may be a small region within
the global domain, resulting in a large measured mass mk.
Another example would be the case of a localized control
domain with a measured centroid pk that is measured to be
in the center of the control domain, but is at the periphery of
the global domain. We therefore aim to express our geomet-
ric measurements in a manner that is invariant to control do-
main choice. This is important when applying MSE-based
geometric loss functions across different tasks due to vary-
ing scales. Therefore, we express all geometric moments in
the global coordinate system using the inverse of the control
domain transformation parameters Ak = [Rk, sk, tk].

Stabilizing Covariance Normalization As we normalize
the covariance matrix by the trace, we stabilize the gradient
in the case of empty substructures by adding a small epsilon
(1e-9) to the diagonal of the covariance matrix.

Adaptive Mass Weighting To avoid centroid and covari-
ance gradient explosion in the case of near-empty segmen-
tations, we adaptively weight the centroid and covariance
losses by the mass of the substructure. Below a predefined
threshold, we set the centroid and covariance weightings
λ1 = λ2 = 0. This mass threshold is determined on a
task-by-task basis, where we multiply the average measured
mass for the task by a factor of 0.1.

Algorithm 12 Geometric Measurement

Require: Sk ∈ Rα×β×γ ▷ Substructure
Require: Rk ∈ R3×3 ▷ Rotation matrix
Require: sk ∈ R3 ▷ Scale vector
Require: tk ∈ R3 ▷ Translation vector

1: Compute Local Moments
2: mraw

k ← ComputeMass(Sk) ▷ (Eq. 3)
3: plocal

k ← ComputeCentroid(Sk,m
raw
k ) ▷ (Eq. 3)

4: Σlocal
k ← ComputeCovariance(Sk,p

local
k ,mraw

k ) ▷ (Eq. 3)
5: mlocal

k ← mraw
k /(αβγ) ▷ Normalize by voxel count

6: Local to Global Transformation
7: Jk ← Rk diag(sk) ▷ Rotation-scale matrix
8: mglobal

k ← mlocal
k · | det(Jk)| ▷ Transform mass

9: dlocal
k ← plocal

k − 1
2
1 ▷ Local displacement from center

10: dglobal
k ← Jkd

local
k ▷ Transform displacement

11: pglobal
k ← tk + dglobal

k ▷ Transform centroid
12: Σglobal

k ← JkΣ
local
k JT

k ▷ Transform covariance
13: return (mglobal

k ,pglobal
k ,Σglobal

k )

7.6. Topological Measurement & Guidance
We partition the persistence set into disjoint sets Yk and Zk

consisting of points that should be preserved or suppressed
based on a topological prior Bk ∈ R3 = [B0,B1,B2],
which specifies the desired features for the components,
loops, and voids, respectively. For each dimension, we sort
the points by persistence and select the top Bi points for
each dimension i specified by the prior.

7.7. Parallelization
For our geometric measurement operations, we take ad-
vantage of parallel GPU computation. We parallelize
across different batch indices, constraints, and substruc-
tures. When computing control domains, some domain
types allow for invalid domains, such as in the case of spher-
ical ray domains, where the ray may not intersect with the
substructure. We handle these invalid domains by masking
out the computed loss. The only exception is our skele-
tonization step for curvilinear control domains, as our im-
plementation is computed on a CPU. For topological mea-
surement, we do not parallelize the persistent homology
computation as no GPU-compatible implementation is pub-
licly available, and CPU-parallelization over several cores
did not provide significant speedups.

8. Experimental Details
8.1. Baselines
Explicit Conditioning To ensure that the elements of Gexp
are roughly between 0 and 1, we min-max normalize the
masses mk, centroids pk, and normalized covariances Σn

k

with values calculated from the real dataset (Tab. 8). The
LDM input channel count is increased to accommodate the



Table 8. Normalizing constants for geometric moments during ex-
plicit conditioning across different tasks.

Geometric Control Task
Parameter RV Mitral Aortic Myo

Mass Min mk 3.19× 10−3 3.67× 10−4 0 0

Mass Max mk 1.3× 10−2 1.36× 10−3 8.59× 10−4 1.95× 10−5

Centroid Min pk 0 0 −7.81× 10−3 0

Centroid Max pk 1 1 0.91 0.64

Covariance Min Σk −1× 10−4 −8.66× 10−4 −5.59× 10−4 2.88× 10−4

Covariance Max Σk 1× 10−2 2.34× 10−3 1.56× 10−3 8.03× 10−4

concatenated input. This method does not readily permit the
use of dropout to train a diffusion model in an unconditional
manner because the null condition is defined as zero, which
is equivalent to the minimum moment values.
Implicit Conditioning To compute the ellipsoidal distance
map, we use the centroids pk and non-normalized covari-
ances Σk for each component to compute the Mahalanobis
distance [8] for each voxel position. We then apply a shifted
sigmoid transform to constrain the outputs between 0 and
1, and subsequently concatenate the resulting grid to the
latents. To enable unconditional generation, we randomly
drop out each substructure channel of Gimp with a proba-
bility of 0.1.

8.2. Datasets
Cardiac Dataset For our study, we utilize TotalSegmen-
tator v2 [46] to create the cardiac segmentations, with
596 3D segmentations manually selected based on segmen-
tation quality assessment. Cardiac structures include the
myocardium (Myo), left and right atria (LA & RA), left
and right ventricles (LV & RV), aorta (Ao), and pulmonary
artery (PA), were segmented using a specialized TotalSeg-
mentator model trained on sub-millimeter resolution data.
For the inferior vena cava (IVC), superior vena cava (SVC),
and pulmonary veins (PV), we retain the labels from the
original dataset. This results in 11 channels per segmenta-
tion. To ensure anatomical validity, we perform topologi-
cal filtration on all structures except the pulmonary veins,
where we extract only the largest connected component.
The resulting segmentations are standardized by resampling
to a uniform voxel resolution of 2mm and subsequently
cropped to a fixed range. The crop center is determined
from the union of all four chamber segmentations, and the
crop length is set to 128 voxels for each side.
Aortic Dataset For the aorta dataset, we extract labels di-
rectly from the original TotalSegmentator v2 [46] segmen-
tations, without applying a specialized model, resulting in
450 3D segmentations manually selected based on segmen-
tation quality assessment. The labels include the main aor-
tic trunk and the ascending branches, which comprise the
brachiocephalic trunk (BCT), left common carotid artery

Table 9. Task-specific hyperparameters and configurations for ge-
ometric control tasks.

Geometric Control Task
Parameter RV Mitral Aortic Myo

Domain Cartesian Interface Curvilinear Spherical
Selection Vector [RV] [LV], [LA] [Ao] [Myo]
Num. Substructures 1 2 5 4

Grid Resolution [64,64,64] [4,32,32] [1,32,32] [4,4,16]

Mass Threshold 10−5 10−4 10−6 10−6

λgeo 1 1 1 1
λ0 (Mass) 107 109 109 109

λ1 (Centroid) 105 106 105 105

λ2 (Covariance) 104 104 103 104

(LCCA), right common carotid artery (RCCA), left subcla-
vian artery (LSCA), and right subclavian artery (RSCA),
for a total of 7 channels per segmentation. All segmenta-
tions are resampled to an isotropic voxel size of 2mm and
cropped to a spatial size of 1283 using a crop center deter-
mined from the center of all combined tissues.
Spinal Dataset For the spinal dataset, we utilize the CT-
Spine1K dataset [10] and extract all vertebral body seg-
mentations, resulting in 784 3D segmentations. The seg-
mentations include 7 cervical vertebrae (C1–C7), 12 tho-
racic vertebrae (T1–T12), and 5 lumbar vertebrae (L1–L5),
for a total of 25 channels per segmentation. To ensure spa-
tial consistency and anatomical completeness, all segmen-
tations are first resampled to an isotropic voxel spacing of
1mm. The center of the crop box is determined from the
union (voxelwise sum) of all vertebral structures in each
scan, and a fixed crop of 1283 voxels is applied for each
case.
Coronary Dataset For the coronary dataset, we extract
coronary artery-related labels from the DISRUPT-CAD
dataset [45], consisting of 120 patients with approximately
375 OCT frames in the longitudinal (z) direction. The seg-
mentations include lumen (Lu), calcium (Ca), and vessel
wall (Ve), for a total of 4 channels per segmentation. Train-
ing samples are generated by resampling the x and y direc-
tions to 128 × 128 pixels while preserving the original z
resolution, then randomly cropping 128 consecutive frames
along the z-axis from each patient scan. This yields approx-
imately 360 unique 3D segmentations of size 1283 with an
isotropic in-plane voxel spacing of approximately 0.1mm.

8.3. Tasks
Geometric Control Tasks We detail the task-specific hy-
perparameters and configurations for the geometric control
tasks in Tab. 9.
Topological Control Tasks We detail the task-specific hy-
perparameters and configurations for the topological control



Table 10. Task-specific hyperparameters and configurations for
topological control tasks.

Topological Control Task

Parameter
Atrial Branch Vert. Calcium

Separation Connectivity Connectivity Count

Domain Global Global Global Global
Selection Vector [LA, RA] All Tissues [T6–T10] [Ca]
Num. Substructures 1 1 1 1

Grid Resolution [64,64,64] [64,64,64] [64,64,64] [64,64,64]

Softmax Value 4 4 4 4
λtopo 5 1 5 50

Prior B0 2 1 1 2
Prior B1 0 0 9 0
Prior B2 0 0 0 0

Table 11. Task-specific hyperparameters and configurations for
multiscale control tasks. Hyperparameters marked with a slash /
indicate smaller and larger domain configurations, respectively.

Parameter Spinal Aorta Myo Wall Vessel Wall

Domain Cartesian Curvilinear Spherical Cylindrical
Selection Vector [T5–T10]/[T6–T8] [Ao] [Myo] [Ca, Ve]
Num. Substructures 1 5 16 16

Grid Resolution [64,64,64] [1,32,32] [1,32,32] [1,32,32]

Mass Threshold 10−4 10−6 10−6 10−6

λgeo 1 1 1 1
λ0 (Mass) 107 109 109 109

λ1 (Centroid) 105 105 105 105

λ2 (Covariance) 104 103 104 104

Domain Grid [64,64,64] [1,16,16]/[16,16,16] [4,4,16]/[8,8,16] [4,4,32]/[16,16,32]

tasks in Tab. 10.
Multiscale Control We detail the task-specific hyperpa-
rameters and configurations for the multiscale control tasks
in Tab. 11. For the spinal task, we achieve multiscale control
by changing the selection vector to include fewer or more
vertebral bodies. For all other tasks, we change the control
domain grid resolution along specified axes.
Partial Decoding For the partial decoding experiments, we
used a Cartesian domain with different resolutions. For
Anatomica-L, both coarse and local L-parsing used grid
resolutions of [32, 32, 32], [64, 64, 64], and [128, 128, 128]
for low, medium, and high resolutions respectively. For
Anatomica-V, we used global decoding with a fixed reso-
lution of [128, 128, 128]. We measured speed in terms of
the maximum number of label maps sampled per second
using the maximum allowable batch size on a single GPU.
We used an A100 with 40 GB of memory for benchmark-
ing. For geometric guidance, the wall clock time was ap-
proximately 50 seconds per sample for the highest decoding
resolution with a convolutional decoder.

8.4. Evaluation
Frechet Morphological Distance To compute the morpho-
logical features, the features are normalized by the mean

and standard deviation of the real data.
Pointcloud evaluation metrics: To compute the point
cloud metrics, we calculate NNA for every tissue label us-
ing 256 points sampled using farthest point sampling. The
metric is then averaged over the number of components.
To compute the pointcloud distances, we approximate Earth
Mover’s Distance (EMD) through the Sinkhorn divergence
[17].
Topological Precision To compute the Betti numbers, we
take the argmax of the predicted segmentation and compute
persistent homology. For a binary segmentation, the bar-
codes are 1 or 0 depending on the existence of the structure.
We then take the sum of barcodes per dimension as the Betti
number. The topological precision is then the fraction of
samples with the correct Betti number per dimension.

9. Ablation Studies
9.1. Geometric Guidance Ablations
We aim to study the influence of individual geometric loss
weightings on the geometric fidelity and generation quality.
We specifically examine the influence of disentangled geo-
metric guidance, where, for example, we only constrain the
centroid but let size and shape free to vary. To do this, we
sweep over the composite geometric loss weighting λgeo for
all tasks, and apply different combinations of loss weight-
ings [λ0, λ1, λ2] to activate or deactivate different geomet-
ric loss terms (see Tab. 12). We sample 128 samples for
each experiment, with 100 sampling steps.
Effect of Guidance Weight In Fig. 8, we see that increas-
ing geometric guidance weight when all loss weightings
are activated (Full) improves geometric fidelity up to a cer-
tain weight, after which sample quality degrades, decreas-
ing geometric fidelity. This is especially pronounced in the
case of centroid-only guidance for the mitral valve and my-
ocardium wall tasks. For generation quality, we see similar
trends where increasing guidance weights can reduce FMD
up to a certain guidance weight.
Effect of Disentangled Guidance In Fig. 8, we demon-
strate that our framework supports disentangled geometric
guidance across all tasks. For instance, centroid-only guid-
ance achieves centroid fidelity comparable to full guidance,
without significantly affecting mass fidelity, shape fidelity,
or generation quality as measured by FMD.

9.2. Topological Guidance Ablations
We aim to study the influence of topological loss weight-
ings, softmax temperature, and partial decoding strategy on
topological fidelity. We first sample 64 segmentations for
several combinations of guidance weight and softmax tem-
perature and evaluate topological fidelity for every combi-
nation (Fig. 9). We then sample 128 samples for various
coarse decoding resolutions and guidance weights while



Table 12. Loss weight configurations for geometric guidance ab-
lation study.

Guidance Loss λ0 λ1 λ2

Full ✓ ✓ ✓

Mass Only ✓ × ×
Centroid Only × ✓ ×

Covariance Only × × ✓

evaluating topological fidelity (Fig. 10) and sampling speed
(Tab. 13).
Effect of Guidance Weight We see in Fig. 9 that increasing
guidance weights broadly improves topological fidelity but
can decrease fidelity with extreme guidance weights.
Effect of Softmax Temperature Similarly, in Fig. 9, we see
that increasing softmax temperature can improve topologi-
cal fidelity for the same guidance weight, but also improves
robustness against the negative effects of exceedingly high
guidance weights. The atrial separation task is an exception
to this, where topological precision for loops and voids is
maximized by using a softmax temperature of 1.
Effect of Partial Decoding Strategy We see in Fig. 10 that
applying partial decoding with increased resolution can sig-
nificantly improve topological fidelity at an increased com-
putational cost. We find that the benefits of increased de-
coding resolution vary based on the topological feature and
task. For example, the number of extra loops in the atrial
separation task is minimized at a decoding resolution of
128, while the number of extra components for the aor-
tic branch task is invariant after a decoding resolution of
32. We also see from Tab. 13 that a decoding resolution of
64 represents a good trade-off between computational cost
and topological fidelity, providing a speedup of 11x over
the next highest resolution. For topological guidance, the
wall clock time was approximately 420 seconds per sam-
ple for the highest decoding resolution with a convolutional
decoder.

Table 13. Topological sampling speed comparison for partial
decoding strategies. Speed is measured in terms of sampled label
maps per second using the maximum allowable batch size on a
single GPU, normalized to the slowest method.

Methodology

Approach Domain Res. Speed (↑)

Anatomica-L Coarse

16 32.00
32 26.25
64 11.00
128 1.14

Anatomica-V Global 128 1.00
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Figure 8. Geometric guidance and disentangled guidance ablation study.
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Figure 9. Topological guidance and softmax temperature ablation study.
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Figure 10. Topological guidance and partial decoding resolution ablation study.


	Introduction
	Related Work
	Methodology
	Anatomical Latent Diffusion Models
	Guidance via Anatomical Potential Functions
	Substructure Parsing for Diffusion Guidance

	Experiments
	Anatomical Datasets
	Control Tasks
	Implementation Details
	Baselines
	Evaluation Metrics
	Results

	Discussion
	Overview
	Methodological Details
	Variational Autoencoder
	Latent Diffusion Model
	Substructure Parsing
	Control Domains
	Geometric Measurement & Guidance
	Topological Measurement & Guidance
	Parallelization

	Experimental Details
	Baselines
	Datasets
	Tasks
	Evaluation

	Ablation Studies
	Geometric Guidance Ablations
	Topological Guidance Ablations


