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Figure 1. Anatomica is a compositional diffusion-guidance framework for generating segmentations based on anatomical features
that are localized within cuboidal control domains. Left: We generate voxel maps according to localized target geometry (size, shape,
and position) visualized as red ellipsoids. Right: We generate voxel maps according to target topology (components, loops, and voids).

Abstract

We present Anatomica: an inference-time framework for
generating multi-class anatomical voxel maps with local-
ized geo-topological control. During generation, we use
cuboidal control domains of varying dimensionality, lo-
cation, and shape, to slice out relevant substructures.
These local substructures are used to compute differen-
tiable penalty functions that steer the sample towards tar-
get constraints. We control geometric features such as
size, shape, and position through voxel-wise moments,
while topological features such as connected components,
loops, and voids are enforced through persistent homology.
Lastly, we implement Anatomica for latent diffusion mod-
els, where neural field decoders partially extract substruc-
tures, enabling the efficient control of anatomical proper-
ties. Anatomica applies flexibly across diverse anatomical
systems, composing constraints to control complex struc-
tures over arbitrary dimensions and coordinate systems,
thereby enabling the rational design of synthetic datasets
for virtual trials or machine learning workflows.

*Equal contribution.

1. Introduction

Anatomical form plays a vital role in dictating the func-
tion and dysfunction of physiological systems. By virtually
modelling patient-specific organ systems as 3D voxelized
segmentations, we can leverage numerical simulators to re-
veal structure-function relationships that inform clinical re-
search and medical device design. Such use cases include
the simulation of clinical trials to evaluate medical devices
[1, 42, 44], or simulating image-formation to create robust
datasets for machine learning workflows [4, 11, 16, 19, 20].

Due to the sparsity and imbalances inherent to real-world
datasets, there has been growing interest in augmenting
anatomical datasets with synthetic data. A key advantage
of using generative models over patient datasets lies in their
controllability. Conditional generation of medical images
based on anatomical or demographic information has been
shown to improve the performance of machine learning
classifiers and segmentation networks [16, 35, 38]. How-
ever, conditional generation of 3D multi-class segmenta-
tions based on anatomical features remains difficult. These
features encompass both geometry (shape and size) and
topology (connected components, loops, or voids). More-
over, such features are defined compositionally over mul-



tiple substructures within the segmentation, with varying
dimensionality (e.g., 3D vs 2D), and across varying coor-
dinate systems (e.g., Cartesian vs curvilinear). The ideal
generative model must not only control such features in a
precise and compositional manner, but also offer control
mechanisms that are intuitive to use.

We introduce Anatomica: an inference-time framework
for controlling anatomical latent diffusion models based
on arbitrarily localized properties related to geometry and
topology. We formulate guidance through two key stages
for each sampling step. First, we differentiably parse
voxel-space segmentations to extract anatomical substruc-
tures with varying dimensionality over arbitrary coordinate
systems. Second, we measure geometric and topological
properties in a differentiable manner and apply potential
functions to guide the reverse sampling process. Lastly,
we adapt this guidance framework for latent diffusion mod-
els through neural field decoders which map arbitrary query
points in latent space to voxel space, enabling the efficient
measurement of anatomical properties from latent space.
We advance the state-of-the-art in the following ways:

* Differentiable and Localized Substructure Extraction:
We introduce a modular method to differentiably parse
localized and anatomically relevant substructures from
voxel-space segmentations (V-parsing). We base our
method on cuboidal control domains with varying scales,
positions, and orientations. By arranging multiple control
domains of varying dimensionality across relevant coor-
dinate systems, we enable the characterization of a wide
array of anatomical systems and structures.

* Unified Geo-Topological Measurement and Guidance:
We demonstrate that applying differentiable measurement
and potential functions over anatomical substructures al-
lows us to constrain localized properties through diffu-
sion guidance. This includes geometric properties such as
size, shape, position, and orientation, as well as topolog-
ical properties such as the number of components, loops,
or voids. We show that, by combining different control
domains and potential, we unlock a rich design space for
compositional anatomical control, within which a wide
variety of structures can be controllably generated.

* Latent Diffusion Guidance with Neural fields: We
show that neural field decoders enable the efficient mea-
surement of voxel-space properties within control do-
mains directly from latent space during sampling (L-
parsing). By exploiting the ability of neural fields to
decode arbitrarily discretized point grids, we avoid the
computational overhead of full-volume decoding. We in-
troduce two partial decoding strategies: coarse L-parsing
decodes globally at reduced spatial resolution, while lo-
calized L-parsing decodes local regions at high resolu-
tion.

2. Related Work

Geometric Control for Generative Models of Anatomy
Geometric features such as size and shape play a crucial
role in biophysical dynamics [14, 26]. Modelling anatomy
with simple shapes such as cylinders [3, 37] provides con-
trol over form but not realism. Statistical shape models
[12, 41, 47] represent realistic variation via global shape
vectors [22, 47] but are not as interpretable or editable. To
bridge this gap, recent studies conditionally train genera-
tive models based on size-based measures [9, 28]. Recently,
Kadry et al. [29] proposed inference-time geometric guid-
ance via differentiable geometry, expanding control to size,
position, and shape, in a compositional manner over multi-
class anatomy. However, this method was limited to glob-
ally defined geometric properties in 3D. In this work, we
extend geometric guidance to arbitrarily localized attributes
based on cuboidal control domains of varying scale, posi-
tion, orientation, and dimensionality. By arranging control
domains over non-Cartesian coordinate systems, we enable
significantly more complex compositional control of physi-
ologically relevant geometric features.

Topological Deep Learning Topological properties such as
the number of components, loops, or voids also play a cru-
cial role in modulating biophysical dynamics [33]. To regu-
larize machine learning workflows in a differentiable man-
ner, persistent homology (PH) can be used [5] to measure
the continuous-valued persistence of topological features.
PH-based topological losses have been used for the training
[7] and test-time adaptation [6] of segmentation networks.
Similarly, PH has been used to conditionally train diffusion
models of 2D binary label maps [21] and 3D surfaces [24].
In contrast to using topological losses to update network
weights, we use PH for inference-time control generative
models that sample multi-class 3D anatomical segmenta-
tions without conditional training. This enables us to flex-
ibly constrain topological features in a plug-and-play man-
ner without retraining.

Spatial Conditioning for Generative Models Spatial con-
trol of generative models relies on two main strategies.
The first conditions models on mid-level representations
(e.g., bounding boxes, ellipsoid parameters) [2, 15, 23, 34,
39]. The second involves guidance methods, such as self-
guidance [13], which employs attention-based losses for ba-
sic geometric control (size, position) in text-to-image mod-
els, but it is not suited for multi-label segmentations, nor is it
adapted for complex constraints needed to describe anatom-
ical shape. In our work, we extend energy-based guid-
ance to localized control over geometry and topology by in-
troducing differentiable potentials for 3D multi-component
anatomical voxel maps based on substructure-specific prop-
erties. We show that this enables a rich design space for
anatomical control, within which a wide variety of organs
can be controllably generated.
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Figure 2. Differentiable measurement of anatomical properties from multi-class voxel maps. A: We differentiably parse relevant
substructures from anatomical voxel maps for localized measurement. B: We spatially transform cuboidal primitives (template domains)
into control domains that slice into anatomical structures (V-parsing). C: The substructure is then differentiably measured in terms of
geometric properties; as well as D: persistent homology-based topological properties.

3. Methodology
3.1. Anatomical Latent Diffusion Models

Autoencoder with Neural Field Decoder We develop our
variational autoencoder based on hybrid implicit-explicit
representations [40]. Our dataset consists of 3D segmen-
tation volumes V € REXHXWXD ith C tissue channels
and (H, W, D) spatial dimensions. During training, a con-
volutional encoder & first encodes the voxelized segmen-
tation map V into a voxelized latent grid representation
z = E(V), where z € ReX"*wXd comprises ¢ channels
and spatial dimensions (h,w,d) = (H/f, W/f, D/ f) for
an integer downsampling factor f. To decode back into
voxel space, a 3D query point grid X9 € R7XWxDx3 jq
used to compute a latent point grid through the latent slice
operator 7'[X4] : R? — R which applies trilinear interpo-
lation for each query point as in Jaderberg et al. [25]. The
resulting latent grid is then pointwise decoded with a neural

field decoder F : R — R into the predicted voxel map
AV c RCXH XWxD.

V= FIXY oT'X(z). (1)
—— ——
Decode Latent Slice Latent

Here, F is parametrized as a multi-layer perceptron that
takes in the interpolated latent point grid and positionally
encoded query points, and o denotes function composition.

Unconditional Diffusion Model We use an unconditional
latent diffusion model (LDM) as a prior over 3D anatom-
ical segmentations. In the forward process, data samples
are progressively corrupted by adding Gaussian noise n
through the relation z, = z + n where n ~ N(0,cI).
Similar to Karras et al. [32], we aim to learn the score func-
tion V,_ log p(z,; o) that defines the reverse diffusion pro-
cess:

dzy = —20V,, log p(zs;0) dt + V20 dw (2)

where dw is the Wiener process. This score function
Va2, logp(zy;0) = (Dg(2zs;0) — 2,)/0? can be expressed
via a denoising function Dy parametrized by a 3D U-Net.
The neural network is trained by minimizing the clean data
prediction objective L = E, , » [w(0)||Do(z4;0) — 2[|3],
with w(o) balancing loss contributions across noise levels.

3.2. Guidance via Anatomical Potential Functions

We assume the voxel map V contains K substructures
Si € [0,1]%8*7 of interest, where o, 3, are grid size
dimensions. Substructures represent anatomical regions of
interest that may be comprised of single tissues (e.g., cross-
sectional slices of an aorta) or combinations thereof (e.g.,
left and right atria). As shown in Fig. 2, each substructure
can be measured in terms of geometric properties (mass,
position, size, shape, orientation) and topological properties
(connectivity, presence of loops or voids).
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Figure 3. Efficient parsing of anatomical substructures during diffusion guidance. A: During guidance, we parse relevant substructures
directly from the clean latent prediction with a neural field decoder (L-parsing). B: In coarse L-parsing, we use a coarse grid to decode
globally defined substructures at low spatial resolution. C: In localized L-parsing, we use a similar grid size but spatially transform the

template point grid to decode localized substructures at high spatial resolution.

Differentiable Geometric Measurement Given a single
parsed substructure S, we aim to differentiably extract the
geometric moments by numerically integrating the zeroth,
first, and second-order moments of the substructure. Here,
the zeroth moment represents the mass my; € R, the first
moment represents the centroid p; € R3, and the sec-
ond moment represents the covariance matrix X, € R3*3,
To do this, we follow Kadry et al. [29], but instead com-
pute the moments for substructures inside arbitrarily sized
cuboidal control domains, rather than globally. We first de-
fine ), € R(@AM)*1 5 the flattened substructure voxel grid
Siandr, € R(@87)%3 a5 the normalized voxel coordinates
between 0 and 1. The moments are then computed as:

QT
mp =17 -9, and pk:ﬂ,
m,
1 .
3 = —r, diag(Q) rx — PrPy - (3)

my,

Here, 17 is the all-ones vector, and diag(-) refers to diago-
nal matrix embedding.

Geometric Decomposition and Size Normalization As
the covariance matrix implicitly contains information on
mass, we aim to obtain a scale-normalized covariance ma-
trix that relates only to orientation and relative aspect ra-
tios. We decompose the covariance as 3 = ka&ka =
v U A UL, where size vy, € R =tr(X}) is the trace of the
covariance matrix, shape Aj, € R3*3 = Ay, /vy, is the eigen-

value matrix A normalized by the trace, and orientation
U, € R3*%3 is an orthonormal matrix. We thus define the
scale-normalized covariance matrix as 33), = UkAka.

Geometric Potential Functions After computing the geo-
metric features, we aim to penalize the deviations from the
target geometric features G, through a geometric poten-
tial function £} °. We formulate this potential function as a

weighted combination of mean squared error losses Lysg:

L5 = N Lis(my, mx) + M Luise (Pk, Pr)
A Luse(ER, 21). @)

Here, [Ao, A1, \2] are the weighting factors for the mass,
position, and normalized covariance losses, respectively.
Adaptive Mass Weighting Given that geometric features
are now defined locally, rather than globally, our potential
functions must account for numerical instability in the cen-
troid and covariance-based losses resulting from empty vox-
els. We address this by adaptively setting Ay = Ay = 0
when the mass is below a specified threshold.
Differentiable Topological Measurement We use persis-
tent homology (PH) to measure the presence of topologi-
cal features within the substructure Sy, considered as a cu-
bical complex, similar to Gupta et al. [21]. We consider
super-level sets of Sy, which are the set of voxels above a
threshold value 7. By decreasing 7, we obtain a filtration



of nested sets, all of which are used to extract topological
features such as connected components (0D features), loops
(1D features), and voids (2D features). The output of this
process is a set of persistence points p € X which include
the birth b and death d thresholds for all topological fea-
tures. Intuitively, persistent features have a large interval
between their birth and death thresholds. We use the Cubi-
cal Ripser library [31] to compute the PH of Sg.

Softmax Temperature Tuning As our substructure is de-
rived from softmaxed multi-class probability maps, we
found that the gradient of the topological potential was too
low in regions where the probability was close to 0 or 1. To
address this, when decoding the substructure from the latent
space, we apply softmax with an increased temperature for
topological guidance, enabling the gradient to pass through
during backpropagation.

Topological Potential Functions To enforce topological
structures within Sy during the reverse diffusion process,
we partition the persistence set into disjoint sets Xy =
Vi U Zj, consisting of points that should be preserved ), or
suppressed Z;, based on a topological prior B;, € R3, which
specifies the desired features for the components, loops, and
voids, respectively. To differentiably compute the topologi-
cal potential, we sample the voxel intensities from Sy, at the
birth 7} and death % coordinates for each persistence point
p. We then maximize or minimize the persistence of each
feature through the following potential functions:

Right Mitral Aortic Myo.
Ventricle Valve Trunk Wall
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Structures+
Target Domain

Substructures

Target
Ellipsoids

Figure 4. Geometric Control Tasks. We define a variety of rel-

evant tasks by varying the selected tissues, template domain grid
size, and control domain-specific spatial transforms.

L = =% ey, ISk08) = Sk + X e 5, Sk () = Skrh)? . (5)

Preserve Loss

Suppress Loss

Gradient-Based Guidance Following Kadry et al. [29],
we guide the diffusion process using the gradient derived
from anatomical potential functions. At each sampling
step, we first denoise the intermediately noised latent z,
to obtain a clean latent prediction zg = Dy(z,; o), which
is then parsed into K substructures S; as described in
Sec. 3.3. We compute a composite anatomical potential
L= £ AeeolE + Aopo L") where Ageo and Aopo
weight the geometric and topological potentials (Fig. 3, top
row). The guided denoising step is then applied as follows:

DY (24;0) = Dgy(z5;0) — 02-V, L . (6)
— — —

Guided Denoising Uncond. Denoising ~ Anatomical Guidance

3.3. Substructure Parsing for Diffusion Guidance

Voxel-Space Parsing Given a predicted voxel-space seg-
mentation map V., we can parse K substructures Sy with
voxel-space substructure parsing (Fig. 2), which we will re-
fer to as V-parsing. V-parsing extracts a substructure by
first using the boolean subset operator U[u] : RY — R;
parametrized by a selection vector u € {0,1}¢ for ele-
mentwise extraction and recombination of tissues from V
into a structure voxel map Si. By taking different tis-
sue combinations, we enable the control of various struc-
tures within the segmentation. The structure slicing oper-
ator 7°[X] : R — R then samples voxelwise intensity
values from Sj, at locations specified by a cuboidal con-
trol domain X, € R**8*7x3 discretized into a lattice-like
point grid. The final relation is given by:

Sk = TS [Xk] OU[U](V) . (7)

——— N——

Slice Structure ~ Subset Voxel
Spatial Transformation of Template Domains Control
domains Xy, are obtained by spatially transforming a tem-
plate point grid X;\™ € R*#X7*3 ysing affine transfor-
mation parameters A, = [Ry, sk, tx], where Ry, € R3%3 is
a rotation matrix, s;, € R3 is a scaling vector, and t; € R3
is a translation vector. The spatial transformation is defined

as:

X}, = Ry, diag(sp)X™ + ty. (8)

This formulation enables flexible substructure parsing
across multiple design axes (Fig. 4). For example, the tem-
plate grid size controls the discretization (coarse to fine)
and dimensionality (3D to 1D) of the parsed substructure.
The affine parameters A can be defined based on custom
coordinate systems and enable the localization of substruc-
tures under varying extents, orientations, and positions in
3D space.

Latent-Space Parsing Rather than decoding the entire
voxel grid and subsequently slicing out substructures, we
propose to use neural field decoders to directly parse sub-
structures from latent space (L-parsing). This is accom-
plished by applying the latent slicing operator 7¢[X}] on



the clean predicted latents z followed by the neural field
decoder F[X},] and the boolean subset operator U [u]:

Sk= Uu] o F[Xi] oT'[Xi](zo). )
~— —_—— ——

Subset Voxel Decode Latent Slice Latent

Partial Decoding Strategies Neural field representations
offer a key advantage in that they enable decoding from ar-
bitrary point sets. We introduce two L-parsing strategies
that apply partial decoding by using point grids with small
grid sizes, enabling fast guidance at inference time. To effi-
ciently measure global-level anatomical properties that are
invariant to spatial resolution, we apply coarse L-parsing
by using a template grid X, with a low grid discretiza-
tion [ < H,B < W,~ < D] and setting the identity-like
affine transformation parameters A = [I, 1, 0] (Fig. 3
bottom left). To efficiently measure anatomical properties
that are defined locally, we apply localized L-parsing by
using a similarly low template grid discretization, but spa-
tially transform the template point grid Xfmp into a local-
ized region, effectively achieving a high spatial resolution
(Fig. 3 bottom right).

4. Experiments

4.1. Anatomical Datasets

For the cardiac dataset, we extract heart-related labels
from the TotalSegmentator dataset [46], resulting in 596
11-channel segmentations. For the aortic dataset, we ex-
tract aorta-related labels from the TotalSegmentator dataset,
resulting in 450 7-channel segmentations. For the spinal
dataset, we extract spinal vertebrae-related labels from the
CTSpinelk dataset [10], resulting in 784 25-channel seg-
mentations. For the coronary dataset, we extract coronary
artery-related labels from the DISRUPT-CAD dataset [45],
resulting in approximately 360 unique 4-channel segmen-
tations. All segmentations were resampled to a uniform
resolution of 1283, and were partitioned into training and
validation sets with an 80/20 split.

4.2. Control Tasks

Geometric Control To evaluate geometric control, we use
the cardiac validation set to determine appropriate target
control domains and target geometric features (see Fig. 4).
The first task is Right Ventricle, which constrains the right
ventricle within a volumetric domain. The second task is
Mitral Valve, which constrains two volumetric domains at
the intersection of the left ventricle and atrium. The third
task is Aortic Trunk, which constrains 5 planar domains
along the aortic trunk centerline. The fourth task is My-
ocardium Wall, which constrains 4 linear domains ema-
nating from the centroid of the myocardium. All quantita-
tive experiments were conducted by sampling 128 synthetic
samples.

Explicit

Anatomica-L

Mitral
Valve

Aortic”
Trunk “Q

Myo.
wall

,O.

Figure 5. Qualitative evaluation of geometric control exper-
iments. We generate anatomical segmentations based on target
domains (black frames) and geometric features (red ellipsoids) for
four cardiac tasks. Sample geometry shown as green ellipsoids.

Topological Control To evaluate topological control, we
define a task for each anatomical dataset. We set a global
target control domain as well as appropriate topological pri-
ors for each task: Atria Separation enforces 2 connected
components for the left and right atria; Branch Connectiv-
ity enforces 1 connected component for the ascending aorta
and all branches; Vertebrae Connectivity enforces 1 con-
nected component and 9 loops for five thoracic spinal ver-
tebrae (T6-T10); and Calcium Count enforces 2 calcium
components in the coronary artery wall.

Table 1. Comparison of geometric control task approaches.

Approach Decoder Parsing  Control Method
Explicit Neural Field N/A Conditioning
Implicit Neural Field N/A Conditioning

Anatomica-V  Convolutional ~ V-parsing Guidance
Anatomica-L.  Neural Field L-parsing Guidance

4.3. Implementation Details

As Anatomica guides the unconditional sampling process
for each task in a training-free manner, we only train a
separate unconditional diffusion model for each anatomi-
cal dataset. We present two variants of Anatomica that uti-
lize different decoding and parsing strategies for guidance
(Tab. 1). Anatomica-V uses a convolutional decoder to first
produce a global voxel grid from the predicted clean la-



Table 2. Quantitative results for geometric control tasks. We
report geometric fidelity and generation quality for each task-
approach combination. Fidelity values for mass, centroid, and co-
variance are multiplied by 1e5, le4, 1e5 respectively.

Geometric Fidelity (]) Generation Quality (])

Task Approach  Mass Cent. Cov. FMD 1-NNA
Explicit 1545 227.1 1014 164.7 0.761
Right Implicit 60.6 51.0 30.6 156.3 0.593
Vent.  Anatomica-L  17.5 48.6 22.1 93.7 0.566
Anatomica-V  12.3 30.2 21.6 84.9 0.590
Explicit 29.0 2465 374 97.1 0.577
Mitral Implicit 8.91 87.0 17.3 3148 0.661
Valve  Anatomica-L 322 114 7.89 888 0.577
Anatomica-V  3.81 414 7.99 93.8 0.586
Explicit 253 2726 139 1143 0.587
Aortic Implicit 0.81 352 5.30 104.8 0.565
Trunk  Apatomica-L  2.38 86.0 16.2 89.8 0.580
Anatomica-V 240 849 14.4 82.0 0.561
Explicit 1.01 1234 339 130.7 0.574
Myo. Implicit 0.48 223 1.67 111.0 0.558
Wall  Anatomica-L 029 346 1.87 864 0.609
Anatomica-V  0.36 423 1.93 97.3 0.554

tents, upon which we extract localized substructures during
guidance with V-parsing. In contrast, Anatomica-L uses
a neural field decoder to directly parse substructures with
L-parsing. For the geometric control tasks, we use local L-
parsing, while the topological tasks use coarse L-parsing.
Unless specified otherwise, we use 100 diffusion sampling
steps.

4.4. Baselines

We also compare our general approach of guiding uncondi-
tional diffusion models against approaches that require con-
ditional training for each task (Tab. 1). For the geometric
control tasks, we implement conditional baselines to con-
trol target geometric features representing the size m, cen-
troid p, and covariance X of each substructure within the
task. The first baseline is Explicit Conditioning, where
we directly encode geometric attributes as scalar values in
the conditioning signal [28, 30]. We flatten and stack all
geometric moments (mass, centroid, covariance) into a 13-
dimensional vector for all K substructures. We then expand
this vector into a voxel grid Gey, € RI3*Exhxwxd which
is concatenated to the latent grid z along the channel di-
mension. The second is Implicit Conditioning, where we
indirectly encode geometric attributes in the concatenated
conditioning signal through 3D heatmaps [30]. Here, we
embed the geometric moments (centroid, covariance) as 3D
Gaussians in voxel space. For each substructure, we create
a voxel map Gipp € RExhxwxd where the voxel values
encode the Mahalanobis distance.
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Figure 6. Qualitative evaluation of topological control exper-
iments. We generate anatomical segmentations based on target
topological priors for four anatomical datasets.

Exactly 2

ii Components

Table 3. Quantitative evaluation for topological control tasks.
We report Betti precision for number of connected components
By, loops B, and voids Bz, and generation quality (1-NNA) for
each approach.

Topo. Precision (%) Gen. Qual.
Task Approach Bo(t) B1(t) B2() 1-NNA()
Atrial Uncond. 7.81 5.47 56.2 0.578
Sep.  Anatomica-L  78.9 89.1 97.7 0.606
Branch  Uncond. 55.5 12.5 63.3 0.559
Conn.  Apatomica-L. ~ 77.3 17.2 64.1 0.532
Vert. Uncond. 28.9 8.59 12.5 0.518
Conn.  Anatomica-L. ~ 74.2 26.6 7.03 0.537
Calcium Uncond. 0.00 2.34 95.3 0.653
Count  Anatomica-L 60.9 79.7 98.4 0.618

4.5. Evaluation Metrics

We measure morphological quality metrics by measuring
the Fréchet morphological distance (FMD) [27] between
real and synthetic distributions in morphological space. To
compute such features, we consider all tissues as substruc-
tures and concatenate all masses, centroids, and normalized
eigenvalues. We average the per-tissue 1-nearest neighbor
accuracy (1-NNA) to compare point cloud distributions us-
ing the Earth Mover’s Distance (EMD) [48]. We evaluate
geometric control fidelity by taking the L;-norm between
the target and measured moments. Lastly, to measure topo-
logical control fidelity, we compute the topological preci-
sion for components By, loops Bj, and voids By as the



fraction of samples with the correct Betti number.

4.6. Results

Precise Geometric Control We quantitatively evaluate ge-
ometric control on the cardiac dataset with four different
tasks. We see in Tab. 2 and Fig. 5 that our inference-time
approach (Anatomica) is competitive in controlling the size,
shape, position, and orientation of various substructures in
the cardiac dataset. The closest baseline is the specialized
implicit concatenation method, which requires conditional
retraining for every task.

Small Domains

Large Domains

Spinal

Aorta

Myo.
Wwall

Figure 7. Multi-scale geometric control of various anatomi-
cal substructures over different coordinate systems. We gener-
ate anatomical segmentations based on domain size and anatomi-
cally relevant coordinate systems (Cartesian, curvilinear, cylindri-
cal, and spherical).

Topological Control We evaluate topological control on
four anatomical datasets. We see in Tab. 3 and Fig. 6 that
our framework is able to control the number of connected
components and loops for various types of anatomical struc-
tures. Adherence to the number of voids is not improved for
the aortic and vertebrae datasets, possibly due to the exis-
tence of single-voxel voids that are not easily detected at
coarser measurement resolutions.

Multi-scale Geometric Control We demonstrate Anatom-
ica’s flexibility for geometric control across multiple
anatomical types including the cardiac, aortic, spinal, and
coronary datasets. As shown in Fig. 7, our framework
handles varying spatial scales (large to small control do-
mains) and operates across different coordinate system
types (Cartesian, cylindrical, and spherical).

Partial Decoding Ablation We evaluate the speed-fidelity
trade-off for partial decoding guidance under various de-
coding resolutions and strategies. We use the geometric
control task involving the right ventricle for evaluation.
We see in Tab. 4 that low-resolution partial decoding with
Anatomica-L maintains geometric fidelity while achieving
substantial speedups against high-resolution decoding. We
also find that given the same decoding resolution, using
a neural field decoder (Anatomica-L) increases sampling
speed at the cost of slightly reduced geometric fidelity, as
compared to convolutional decoders (Anatomica-V).

Table 4. Quantitative ablation study for partial decoding
strategies. We evaluate the geometric fidelity and generation qual-
ity, and sampling speed for different decoding strategies and res-
olutions. Speed is measured in terms of sampled label maps per
second using the maximum allowable batch size on a single GPU,
normalized to the slowest method. Fidelity values for mass, cen-
troid, and covariance are multiplied by 1e5, le4, 1e5 respectively.

Methodology Geometric Fidelity (1)  Gen. Qual. ()  Speed (1)

Approach Domain Res. Mass Cent. Cov. FMD 1-NNA Speed

High 17.02 48.14 21.85 9116 0.57 2.48
Local Med. 16.64 4841 2203 93.89 0.58 7.43

. Low 1643 4875 22.07 105.57 0.55 10.40
Anatomica-L

High 17.50 4858 22.77 114.62 0.55 2.08
Coarse  Med. 17.75 4878 23.03 119.93 0.53 7.43
Low 2030 4696 2560 123.31 0.54 10.40

Anatomica-V  Global High 11.95 30.66 2192 84.70 0.58 1.00

5. Discussion

Limitations The main limitation of our guidance approach
is that loss weightings should be tuned to balance the con-
tributions of each constraint. However, we found that
our choice of weights transfers readily between the four
anatomical datasets we consider in this study. Moreover,
we found that computing persistent homology at high res-
olution is computationally demanding and limits the coarse
decoding resolution for topological guidance.

Conclusion We propose an inference-time framework for
controlling generative models of anatomical voxel maps
based on localized geo-topological attributes. Our design
space centers on cuboidal control domains that composi-
tionally slice out substructures across varying dimensions
and coordinate systems. Over these domains, we propose
the use of geo-topological potential functions for diffusion
guidance, as well as neural field decoders for efficient par-
tial decoding from latent space. We demonstrate state-
of-the-art performance for geometric and topological con-
trol across a variety of anatomical systems and structures.
We believe this work opens new avenues for controllable
anatomical generation, with applications to virtual clinical
trials and synthetic data augmentation for machine learning.
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Anatomica: Localized Control over Geometric and Topological Properties for
Anatomical Diffusion Models

Supplementary Material

6. Overview

Methods In Sec. 7, we detail the methods relating to
diffusion model training, substructure parsing, and geo-
topological measurement.

Experimental Details In Sec. 8, we provide additional de-
tails on dataset creation, task setup, and evaluation metrics.
Ablations In Sec. 9, we study the influence of various hy-
perparamters such as individual loss weightings, decod-
ing resolutions, and softmax temperature for geometric and
topological guidance.

7. Methodological Details

7.1. Variational Autoencoder

For this study, we adapt the voxel map VAE architecture
specified by Kadry et al. [29], which consists of a convo-
lutional encoder and decoder. All architectural and training
hyperparameters can be found in tables 5 and 6.

Decoder Architecture We introduce two variants of
Anatomica for latent diffusion guidance, with the primary
difference being the decoder architecture that converts la-
tent grid representation z € R¢*"*wxd into a voxel grid
representation V € ROXHXWXD that can be anatomically
characterized. Anatomica-V uses a convolutional decoder
that mirrors the encoder, where the latent grid can only
be decoded to full voxel resolution. On the other hand,
Anatomica-L uses a neural field-based decoder that takes
as input an arbitrary point grid X4 € RH*XWxDx3 apd
returns for each point, the probability vector denoting the
most likely anatomical class.

Neural Field Decoder Our decoder F decodes voxel maps
with neural fields by first applying a bottleneck convolu-
tion to the latent grid representation in order to aggregate
features within a local neighborhood. We then use a set of
query points to interpolate into the latent grid representa-
tion using the slice operator 7¢[X] to create a set of latent
points which are then point-wise concatenated with random
Fourier features [36, 43]. These features are then fed into a
multi-layer perceptron (MLP) which consists of several hid-
den layers and finally outputs a logit vector for each query
point. The logit vectors are then softmaxed to produce a
segmentation probability vector.

Training We train all autoencoders with a combination of
Dice-Cross Entropy reconstruction loss and KL divergence
loss [28]. For neural field decoder training, we decode back
to the full resolution global voxel grid with a query point
grld X4 ¢ RHXWXDXS.

Table 5. Autoencoder architecture hyperparameters

Conv. Encoder (shared) Value
Num. Channels [64, 128, 256]
Num. Res. Blocks 2

Final Downscaling Factor 4
Bottleneck Dim 3
Conv. Decoder (Anatomica-V) Value
Num. Channels [64, 128, 256]
Num. Res. Blocks 2

Final Upscaling Factor 4
Neural Field Decoder (Anatomica-L) Value
Bottleneck Conv. Channels 64
Positional Encoding Dim 10
Positional Encoding Bandwidth 1

MLP Hidden Dim 128
MLP Num Layers 3
Normalization LayerNorm
Activation RelLU

Table 6. Autoencoder training hyperparameters

Hyperparameter Value
Learning Rate 1x107°
Epochs 40
Batch Size 1
Dice-CE Loss Weight 1

KL Loss Weight 1x10°

7.2. Latent Diffusion Model

Architecture & Training For latent diffusion model archi-
tecture and training, we follow the formulation and archi-
tecture specified by Kadry et al. [29]. All architectural
and training hyperparameters can be found in table 7. Our
denoising model Dy is parametrized in a skip-connection
manner with a U-Net Ky with a convolutional encoder and
decoder through the following relation:

Dy (z0;0) = cuip(0) 2o

10
+ Cout(a K&(Cin(a) Zg; cnoise(a)) {10



Where (Cskip>Cout»Cin»Cnoise) are noise-level-dependent scaling
coefficients [32], o is the noise level. We use the same hy-
perparameters for the scaling coefficients as in Karras et al.
[32], but sample our noise level p(c) from a lognormal dis-
tribution with different parameters (see table 7).

Sampling Once the denoiser has been sufficiently trained,
we define a specific noise level schedule governing the re-
verse process, in which the initial noise level, o, starts at
Omax and decreases to o p;,:

1 i 1 1 P
0; = (Urgax+ m(a}gin —Urﬁax)) (11
where p, 0, and 0,4, are hyperparameters defined in ta-
ble 7. We specifically use the stochastic sampling method
proposed in Karras et al. [32] (see Tab. 7 for hyperparame-
ters).

Table 7. Diffusion model hyperparameters

Training Value
Ir 2.5 % 107°
Epochs 50
Batch Size 1
Num. Channels [64, 128, 196]
Num. Res. Blocks 2
Num. Attn. Heads 1
Attn. Res. 8,4,2
Odata 1
p(o) mean 1
p(o) std 1.2
Sampling Value
Omin 1x 102
Omaz 80
P 1

7.3. Substructure Parsing

Anatomica revolves around parsing substructures through
the use of selection vectors and control domains, enabling
the measurement of anatomical properties for specified tis-
sues within localized regions of interest. Selection vectors
are binary vectors u € {0,1}¢ which select a subset of
tissues from a voxel grid V through the Boolean subset
operator U[u] (see Algorithm 1). By varying the Boolean
selection vector, we enable the measurement of anatomic
structures that are composed of multiple tissue types. Con-
trol domains are instantiated as point grids X € Ra*#x7x3
that are used to parse substructures from grid-like represen-
tations such as voxel grids V using the voxel slicing op-

erator 7*[X] with V-parsing (see Algorithm 2). Alterna-
tively, we can parse substructures directly from the latent
representation z using the latent slicing operator 7" [X] with
L-parsing (see Algorithm 3). To obtain control domains,
we first define a template domain X' € RXBX7%3 a5 3
point grid centered at 0, with a grid size g = [«, 8,7]. We
then apply a spatial transformation defined by affine trans-
formation parameters A = [R, s, t] to obtain anatomically
relevant control domains.

Algorithm 1 Boolean Subset Operator

Require: V ¢ RE*HxWxD > Voxel map
Require: u € {0,1}¢ > Boolean selection vector
1: S«o0 > Initialize
2: for tissue 7 where u; = 1 do
3: S + max(S, V;) > Union via maximum
4: end for
5: return S € R7>*WxD

Algorithm 2 Voxel Substructure Parsing (V-parsing)

Require: V ¢ RE*HxWxD > Voxel map
Require: u € {0,1}¢ > Selection vector
Require: {X;}r, where X € R**#*7X3 ;5 Control domains

§ubset Tissues
S « U[u](V) € REXWxD

Parse Substructures
fork=1,...,Kdo

Sk TS[X}C}(S) S RQXBX’Y
end for
return {Sk}f:1

> Boolean subset

> Voxel slice

NN R

Algorithm 3 Latent Substructure Parsing (L-parsing)

Require: z € RO*"xwxd > Latent representation

Require: u € {0,1}¢ > Selection vector
Require: {X;}r, where X € R**#*7X3 ;5 Control domains

: Parse Substructures
cfork=1,...,Kdo
zi, < T'[Xy](z) € REX*FxY > Latent slice
Sy, < Ulu] o F[Xx](z1) € R¥*#*7 b Decode & subset
end for
return {S;}7_;

BANRANE N

7.4. Control Domains

Anatomica supports several methods for defining control
domains Xy, each useful for probing different anatomical
or geometric properties. In this study, we primarily compute
control domain parameters from real anatomical voxel maps
and measure geometric properties within such domains to
define targets for diffusion guidance. This approach is not
limited to guidance use-cases, and can potentially be used



for other machine-learning tasks that use differentiable loss
functions. We now detail the algorithmic procedures for
computing control domain parameters across different co-
ordinate systems from anatomical voxel maps.

Global Domain Computation The global control domain
can be used to measure properties over the entire voxel
grid without geometric feature extraction at a variable spa-
tial resolution. We compute global domains through Algo-
rithm 4.

Algorithm 4 Global Domain Computation

Require: (o, 8,7) witha ~ § ~ ~ > Volumetric grid size

1: Set Affine Parameters

2: R+ IeR¥>3 > Rotation
3 t+— 0eR? > Translation
4: s+ 1cR? > Scale
5: return A = [R, s, t]

Cartesian Domain Computation Cartesian domains en-
able the measurement of anatomical properties within lo-
calized bounding boxes that contain structures of interest.
We compute Cartesian domains through Algorithm 5.

Algorithm 5 Cartesian Domain Computation

Require: u € {0,1}¢
Require: (o, 8,7) witha ~ § ~ ~

> Tissue selection vector
> Volumetric grid size

1: Extract Bounding Box

2 S« U](V),S T[S > 0.9] > Subset & binarize
3: WP plover . ExtractLimits(S) where r'PPf rlover ¢ R?

4: Set Affine Parameters

5: R« IcR3*3 > Rotation
6: t « (PP 4 ') /2 € R3 > Translation
7 s« (£'PP — £ o [, B,4]T € R? > Scale
8

: return A = [R, s, t]

Interface Domain Computation Interface domains enable
the measurement of local anatomical properties at the in-
terfacial region between two or more structures, such as
valve annuli or branch points. We compute interface do-
mains through Algorithm 6.

Algorithm 6 Interface Domain Computation

> Tissue selection vectors
> Planar grid size
> Kernel size, ref vector

Require: u”?,u? € {0,1}¢
Require: (o, 3,v) witha < 8 =~
Require: kg, R™ € R3*!

1: Extract Interface Regions

2 8% U (V), S” « UP|(V) > Subset
3 S« maproolkgu(SA), SE maxpoolkdn(SB ) > Dilate
4 M« min(S§, Sg) > Combine
5: 84+ SYoM,SE«~SPoM > Mask interface
6: Compute Interface Frame Orientations

7. p?, p? « Centroid(S7}), Centroid(SE) > (Alg. 12)
8: R* « (p” — p*)/|Ip? — p?| € R**' © Interface vector
9: R? R « Orthonorm.(R®,R") € R3*! > (Alg. 11)
10: Set Affine Parameters

11: R+ [R*,R?,R"] € R**? > Rotation
12: s « [o/H,3/W,v/D]" € R® > Scale

> Translation

—_
[95]

s t4 « p? e R tP « pP e R
return A = [R,s,t*], A®” = [R,s,t”]

=

Curvilinear Domain Computation Curvilinear domains
enable the measurement of cross-sectional anatomical prop-
erties along tubular structures such as blood vessels. We
compute curvilinear domains through Algorithm 7. For
skeletonization, we follow the methods and hyperparame-
ters detailed in Kadry et al. [28] for non-differentiable hard
skeletonization.

Algorithm 7 Curvilinear Domain Computation

Require: u ¢ {0,1}¢ > Tissue selection vector
Require: (o, 3,v) witha < 8~ ~ > Planar grid size
Require: iz, R™ € R3*! 1 Subsampling Indices, Ref vector

1: Extract Centerline

2 S« Uu](V),S T[S > 0.9] > Subset & binarize
3: C « Skeletonize(S) where C € RNeener*3

4: Compute Curvilinear Frames

5. F* < FiniteDifference(C) € RNemer*3 > Tangent vectors
6: Fg,Fg + Orthonorm.(Fg§, R") > (Alg. 11)
7. FP FY ParallelTr::msport(F‘)‘,Fg7 F}) > (Alg. 10)
8: C° Subsample(C, isp) where C* ¢ RNplanes X3

9: R* R?,R” « Subsample(F®, F# F7 igp) € RVpanes X3
10: Set Affine Parameters

11: for domain k =1, ..., Nyjanes do

122 Ry + Ry, R, R]] € R > Rotation
13: sy < [a/H, B/W,v/D]T € R® > Scale
14: ty < CP* cR? > Translation
15: end for

16: return {Ak}kNi“‘l““

Spherical Domain Computation Spherical domains en-
able the measurement of radial anatomical properties of
shell-like structures such as myocardial walls. We compute
spherical domains through Algorithm 8. Instead of sam-



pling equidistant points in polar and azimuthal space, we
compute equally distributed points on the sphere surface us-
ing the Fibonacci lattice algorithm [18].

Algorithm 8 Spherical Domain Computation

Require: u ¢ {0,1}¢

Require: (o, 3,v) witha = 8 < v

Require: Ny, Ny, R™ € R¥*!
resolution, ref vector

> Tissue selection vector
> Ray-like grid size
> Number of rays, query ray

: Generate Radial Directions
: S+ U(V) > Subset tissues
. p < Centroid(S) € R? > (Alg. 12)
R” « FibonacciLattice( Nyys, p) where RY € Ry X3
R?,R" « Orthonorm.(R”,R") € RV=*3 5 (Alg. 11)
: Find Wall Centroids and Set Affine Parameters
: fordomain k = 1,..., Npuys do

X <+ MakeQueryRay(p, R}, N;) where X} €
Rl X1XNgx3

9: S« T [X™](S)

> Slice along ray

10:  Ppyank < Centroid(S}Y) € R? > (Alg. 12)
11: Ry« [RE, R R} e R®*3 > Rotation
12: s <« [o/H,B/W,v/D]* € R > Scale

13: ti + Pwak € R? > Translation
14: end for
Nrays

15: return {Ag},

Cylindrical Domain Computation Cylindrical domains
enable the measurement of radial anatomical properties of
walled tubular structures such as coronary arteries. We
compute cylindrical domains through Algorithm 9. We
compute cylindrical domains by defining equidistant ray
centers along the z-axis and equally sampling the polar di-
rections according to predefined sampling resolutions.

Algorithm 9 Cylindrical Domain Computation

Require: u € {0,1}¢ > Tissue selection vector

Require: (o, 3,v) witha ~ 8 < v > Ray-like grid size

Require: N, Ng, Ng,R" € R3X! » Z-levels, angles, query ray
resolution, ref vector

1: Generate Cylindrical Directions
S « U](V) > Subset tissues
R < CylindricalLattice(N,, Ng) where RY € RMms*3,
Nrays = N2 X No
R?,R® « Orthonorm.(R”,R") € RMw*3 1 (Alg. 11)
Find Wall Centroids and Set Affine Parameters
for domain k = 1,..., Npys do

Xy <+ MakeQueryRay(R), N;) where X;¥ €
Rl X1XNgx3

i« T IXP1(S)

Nk

> Slice along ray

: Pual, i < Centroid(S}yY) € R? > (Alg. 12)
10: Ry« [R$, R}, R)] € R®*? > Rotation
11: sy < [a/H, B/W,~v/D]T € R® > Scale

12: tr < Puarx € R > Translation
13: end for
Nrays

14: return {Ag},

Parallel Transport Procedure For curvilinear coordinate
systems, we aim to maintain consistent frame orientations
as we move along the centerline. To do this, we apply par-
allel transport by propagating an initial orthonormal frame
along a centerline using the Rodrigues rotation formula.

Algorithm 10 ParallelTransport

Require: F! ¢ RNeenerx3 > Normalized tangent vectors
Require: F2,F} ¢ R3 > Initial normalized frame vectors
1: fori =1,..., Neenwer — 1 do
2 a; « (Fi_; x F})/||Fi_1 x F}|| > Rotation axis
3: 0; «— cos ™ (Fi_, - F}) > Rotation angle
4: F? F? < Rodrigues(F7_,,F_, a;,0;)
5
6

: end for
. return F? F3 g RNeenerx3

Orthonormalization Procedure For interface, curvilinear,
spherical, and cylindrical coordinate systems, we wish to
compute a set of orthonormal frame vectors from an initial
vector. To do this, we define an arbitrary reference vector
R" and compute orthonormal frame vectors from a primary
direction vector by taking successive cross products. For
numerical stability, we use an alternate reference vector if
the reference and initial vectors are perfectly aligned.



Algorithm 11 Orthonormalization

Algorithm 12 Geometric Measurement

Require: U°? ¢ R3*!
Require: R™ ¢ R**!
1: U« (U° x R")/||U° x R7|| € R®*!
vector
2: U? « U x U! e R¥?
(auto-normalized)
3: return U', U?

> Primary direction vector
> Reference vector
> Second frame

> Third frame vector

7.5. Geometric Measurement & Guidance

Scale Standardization of Mass We normalize the mea-
sured mass my by the total number of voxels in the con-
trol domain o5 in order to remain invariant to control do-
main discretization, allowing us to maintain similar geomet-
ric loss weightings across different discretization levels.

Local to Global Transformation of Moments Our geo-
metric moment formulation can be sensitive to control do-
main discretization and coordinate system choice. For ex-
ample, our substructure can inhabit 80% of the control do-
main, but the control domain may be a small region within
the global domain, resulting in a large measured mass my.
Another example would be the case of a localized control
domain with a measured centroid py, that is measured to be
in the center of the control domain, but is at the periphery of
the global domain. We therefore aim to express our geomet-
ric measurements in a manner that is invariant to control do-
main choice. This is important when applying MSE-based
geometric loss functions across different tasks due to vary-
ing scales. Therefore, we express all geometric moments in
the global coordinate system using the inverse of the control
domain transformation parameters A, = [Ry, s, ti].

Stabilizing Covariance Normalization As we normalize
the covariance matrix by the trace, we stabilize the gradient
in the case of empty substructures by adding a small epsilon
(1e-9) to the diagonal of the covariance matrix.

Adaptive Mass Weighting To avoid centroid and covari-
ance gradient explosion in the case of near-empty segmen-
tations, we adaptively weight the centroid and covariance
losses by the mass of the substructure. Below a predefined
threshold, we set the centroid and covariance weightings
A1 = Ao = 0. This mass threshold is determined on a
task-by-task basis, where we multiply the average measured
mass for the task by a factor of 0.1.

Require: S; € R*A*Y
Require: R; € R3*3
Require: s; € R®
Require: t; € R®

> Substructure

> Rotation matrix

> Scale vector

> Translation vector

1: Compute Local Moments

2: my™ < ComputeMass(Sx) > (Eq. 3)
3: pe « ComputeCentroid(Sy,, mi™) > (Eq. 3)
4: 2 ComputeCovariance(Sy, pie=, mi™) > (Eq. 3)
50 mp — mP/(aBy) > Normalize by voxel count
6: Local to Global Transformation

7. Ji < Ry diag(sk) > Rotation-scale matrix
8: mE  mlel | det(Jy)] > Transform mass
9: d + p — 11 > Local displacement from center
10: A2« Jpdied > Transform displacement
11: p2 ¢y + dd™ > Transform centroid
12: B g, Zhoeal g7 > Transform covariance
13: return (milobal7 pilobeﬂ’ Eilobal)

7.6. Topological Measurement & Guidance

We partition the persistence set into disjoint sets )V, and Zj,
consisting of points that should be preserved or suppressed
based on a topological prior B;, € R® = [B0,B1,B2],
which specifies the desired features for the components,
loops, and voids, respectively. For each dimension, we sort
the points by persistence and select the top B; points for
each dimension ¢ specified by the prior.

7.7. Parallelization

For our geometric measurement operations, we take ad-
vantage of parallel GPU computation. We parallelize
across different batch indices, constraints, and substruc-
tures. When computing control domains, some domain
types allow for invalid domains, such as in the case of spher-
ical ray domains, where the ray may not intersect with the
substructure. We handle these invalid domains by masking
out the computed loss. The only exception is our skele-
tonization step for curvilinear control domains, as our im-
plementation is computed on a CPU. For topological mea-
surement, we do not parallelize the persistent homology
computation as no GPU-compatible implementation is pub-
licly available, and CPU-parallelization over several cores
did not provide significant speedups.

8. Experimental Details

8.1. Baselines

Explicit Conditioning To ensure that the elements of Gexp
are roughly between 0 and 1, we min-max normalize the
masses myg, centroids pg, and normalized covariances 3}
with values calculated from the real dataset (Tab. 8). The
LDM input channel count is increased to accommodate the



Table 8. Normalizing constants for geometric moments during ex-
plicit conditioning across different tasks.

Table 9. Task-specific hyperparameters and configurations for ge-
ometric control tasks.

Geometric Control Task

Parameter RV Mitral Aortic Myo
Mass Min my, 3.19 x 1073 3.67 x 107* 0 0
Mass Max my, 1.3x1072 136 x107%  859x107* 1.95x107°
Centroid Min py, 0 0 —7.81 x 1073 0
Centroid Max py 1 1 0.91 0.64

~1x107* —8.66x10~* —559x10"* 2.88x107*
1x 1072 234x107%  1.56 x 1073 8.03 x 1074

Covariance Min X,

Covariance Max Xy,

concatenated input. This method does not readily permit the
use of dropout to train a diffusion model in an unconditional
manner because the null condition is defined as zero, which
is equivalent to the minimum moment values.

Implicit Conditioning To compute the ellipsoidal distance
map, we use the centroids px and non-normalized covari-
ances 3 for each component to compute the Mahalanobis
distance [8] for each voxel position. We then apply a shifted
sigmoid transform to constrain the outputs between 0 and
1, and subsequently concatenate the resulting grid to the
latents. To enable unconditional generation, we randomly
drop out each substructure channel of Gimp with a proba-
bility of 0.1.

8.2. Datasets

Cardiac Dataset For our study, we utilize TotalSegmen-
tator v2 [46] to create the cardiac segmentations, with
596 3D segmentations manually selected based on segmen-
tation quality assessment. Cardiac structures include the
myocardium (Myo), left and right atria (LA & RA), left
and right ventricles (LV & RV), aorta (Ao), and pulmonary
artery (PA), were segmented using a specialized TotalSeg-
mentator model trained on sub-millimeter resolution data.
For the inferior vena cava (IVC), superior vena cava (SVC),
and pulmonary veins (PV), we retain the labels from the
original dataset. This results in 11 channels per segmenta-
tion. To ensure anatomical validity, we perform topologi-
cal filtration on all structures except the pulmonary veins,
where we extract only the largest connected component.
The resulting segmentations are standardized by resampling
to a uniform voxel resolution of 2mm and subsequently
cropped to a fixed range. The crop center is determined
from the union of all four chamber segmentations, and the
crop length is set to 128 voxels for each side.

Aortic Dataset For the aorta dataset, we extract labels di-
rectly from the original TotalSegmentator v2 [46] segmen-
tations, without applying a specialized model, resulting in
450 3D segmentations manually selected based on segmen-
tation quality assessment. The labels include the main aor-
tic trunk and the ascending branches, which comprise the
brachiocephalic trunk (BCT), left common carotid artery

Geometric Control Task

Parameter RV Mitral Aortic Myo
Domain Cartesian Interface  Curvilinear ~ Spherical
Selection Vector [RV] [LV], [LA] [Ao] [Myo]
Num. Substructures 1 2 5 4
Grid Resolution ‘ [64,64,64] [4,32,32] [1,32,32] [4,4,16]
Mass Threshold | 107° 10— 10-6 10-6
)\geo 1 1 1 1

Ao (Mass) 107 10° 10° 10°
A1 (Centroid) 10° 108 10° 10°
Ao (Covariance) 10* 104 103 10*

(LCCA), right common carotid artery (RCCA), left subcla-
vian artery (LSCA), and right subclavian artery (RSCA),
for a total of 7 channels per segmentation. All segmenta-
tions are resampled to an isotropic voxel size of 2 mm and
cropped to a spatial size of 1283 using a crop center deter-
mined from the center of all combined tissues.

Spinal Dataset For the spinal dataset, we utilize the CT-
SpinelK dataset [10] and extract all vertebral body seg-
mentations, resulting in 784 3D segmentations. The seg-
mentations include 7 cervical vertebrae (C1-C7), 12 tho-
racic vertebrae (T1-T12), and 5 lumbar vertebrae (L1-L5),
for a total of 25 channels per segmentation. To ensure spa-
tial consistency and anatomical completeness, all segmen-
tations are first resampled to an isotropic voxel spacing of
1mm. The center of the crop box is determined from the
union (voxelwise sum) of all vertebral structures in each
scan, and a fixed crop of 128% voxels is applied for each
case.

Coronary Dataset For the coronary dataset, we extract
coronary artery-related labels from the DISRUPT-CAD
dataset [45], consisting of 120 patients with approximately
375 OCT frames in the longitudinal (z) direction. The seg-
mentations include lumen (Lu), calcium (Ca), and vessel
wall (Ve), for a total of 4 channels per segmentation. Train-
ing samples are generated by resampling the x and y direc-
tions to 128 x 128 pixels while preserving the original z
resolution, then randomly cropping 128 consecutive frames
along the z-axis from each patient scan. This yields approx-
imately 360 unique 3D segmentations of size 128 with an
isotropic in-plane voxel spacing of approximately 0.1 mm.

8.3. Tasks

Geometric Control Tasks We detail the task-specific hy-
perparameters and configurations for the geometric control
tasks in Tab. 9.

Topological Control Tasks We detail the task-specific hy-
perparameters and configurations for the topological control



Table 10. Task-specific hyperparameters and configurations for
topological control tasks.

Topological Control Task
Atrial Branch Vert. Calcium

Parameter

Separation Connectivity Connectivity Count
Domain Global Global Global Global
Selection Vector [LA, RA] All Tissues [T6-T10] [Ca]
Num. Substructures 1 1 1 1
Grid Resolution [64,64,64] [64,64,64] [64,64,64] [64,64,64]
Softmax Value 4 4 4 4
Atopo 5 1 5 50
Prior BO 2 1 1 2
Prior B1 0 0 9 0
Prior B2 0 0 0

Table 11. Task-specific hyperparameters and configurations for

multiscale control tasks. Hyperparameters marked with a slash /
indicate smaller and larger domain configurations, respectively.

Parameter ‘ Spinal Aorta Myo Wall ‘Vessel Wall
Domain Cartesian Curvilinear Spherical Cylindrical
Selection Vector [T5-T10)/[T6-T8] [Ao] [Myo] [Ca, Ve]
Num. Substructures 1 S 16 16
Grid Resolution ‘ [64,64,64] [1,32,32] [1,32,32] [1,32,32]
Mass Threshold | 104 1076 1076 1076
Ageo 1 1 1 1

Ao (Mass) 107 10° 109 10°

A1 (Centroid) 10° 10° 10° 10°

Ao (Covariance) 104 10% 10* 104
Domain Grid [64,64,64] [1,16,16]/[16,16,16]  [4.4,16]/[8,8,16] [4,4,32]/[16,16,32]

tasks in Tab. 10.

Multiscale Control We detail the task-specific hyperpa-
rameters and configurations for the multiscale control tasks
in Tab. 11. For the spinal task, we achieve multiscale control
by changing the selection vector to include fewer or more
vertebral bodies. For all other tasks, we change the control
domain grid resolution along specified axes.

Partial Decoding For the partial decoding experiments, we
used a Cartesian domain with different resolutions. For
Anatomica-L, both coarse and local L-parsing used grid
resolutions of [32, 32, 32], [64,64, 64], and [128, 128, 128]
for low, medium, and high resolutions respectively. For
Anatomica-V, we used global decoding with a fixed reso-
lution of [128,128,128]. We measured speed in terms of
the maximum number of label maps sampled per second
using the maximum allowable batch size on a single GPU.
We used an A100 with 40 GB of memory for benchmark-
ing. For geometric guidance, the wall clock time was ap-
proximately 50 seconds per sample for the highest decoding
resolution with a convolutional decoder.

8.4. Evaluation

Frechet Morphological Distance To compute the morpho-
logical features, the features are normalized by the mean

and standard deviation of the real data.

Pointcloud evaluation metrics: To compute the point
cloud metrics, we calculate NNA for every tissue label us-
ing 256 points sampled using farthest point sampling. The
metric is then averaged over the number of components.
To compute the pointcloud distances, we approximate Earth
Mover’s Distance (EMD) through the Sinkhorn divergence
[17].

Topological Precision To compute the Betti numbers, we
take the argmax of the predicted segmentation and compute
persistent homology. For a binary segmentation, the bar-
codes are 1 or 0 depending on the existence of the structure.
We then take the sum of barcodes per dimension as the Betti
number. The topological precision is then the fraction of
samples with the correct Betti number per dimension.

9. Ablation Studies

9.1. Geometric Guidance Ablations

We aim to study the influence of individual geometric loss
weightings on the geometric fidelity and generation quality.
We specifically examine the influence of disentangled geo-
metric guidance, where, for example, we only constrain the
centroid but let size and shape free to vary. To do this, we
sweep over the composite geometric loss weighting Ay, for
all tasks, and apply different combinations of loss weight-
ings [Ag, A1, A2] to activate or deactivate different geomet-
ric loss terms (see Tab. 12). We sample 128 samples for
each experiment, with 100 sampling steps.

Effect of Guidance Weight In Fig. 8, we see that increas-
ing geometric guidance weight when all loss weightings
are activated (Full) improves geometric fidelity up to a cer-
tain weight, after which sample quality degrades, decreas-
ing geometric fidelity. This is especially pronounced in the
case of centroid-only guidance for the mitral valve and my-
ocardium wall tasks. For generation quality, we see similar
trends where increasing guidance weights can reduce FMD
up to a certain guidance weight.

Effect of Disentangled Guidance In Fig. 8, we demon-
strate that our framework supports disentangled geometric
guidance across all tasks. For instance, centroid-only guid-
ance achieves centroid fidelity comparable to full guidance,
without significantly affecting mass fidelity, shape fidelity,
or generation quality as measured by FMD.

9.2. Topological Guidance Ablations

We aim to study the influence of topological loss weight-
ings, softmax temperature, and partial decoding strategy on
topological fidelity. We first sample 64 segmentations for
several combinations of guidance weight and softmax tem-
perature and evaluate topological fidelity for every combi-
nation (Fig. 9). We then sample 128 samples for various
coarse decoding resolutions and guidance weights while



Table 12. Loss weight configurations for geometric guidance ab-
lation study.

Guidance Loss XAy A1 Ao

Full
Mass Only X
Centroid Only  x
Covariance Only x X

evaluating topological fidelity (Fig. 10) and sampling speed
(Tab. 13).

Effect of Guidance Weight We see in Fig. O that increasing
guidance weights broadly improves topological fidelity but
can decrease fidelity with extreme guidance weights.
Effect of Softmax Temperature Similarly, in Fig. 9, we see
that increasing softmax temperature can improve topologi-
cal fidelity for the same guidance weight, but also improves
robustness against the negative effects of exceedingly high
guidance weights. The atrial separation task is an exception
to this, where topological precision for loops and voids is
maximized by using a softmax temperature of 1.

Effect of Partial Decoding Strategy We see in Fig. 10 that
applying partial decoding with increased resolution can sig-
nificantly improve topological fidelity at an increased com-
putational cost. We find that the benefits of increased de-
coding resolution vary based on the topological feature and
task. For example, the number of extra loops in the atrial
separation task is minimized at a decoding resolution of
128, while the number of extra components for the aor-
tic branch task is invariant after a decoding resolution of
32. We also see from Tab. 13 that a decoding resolution of
64 represents a good trade-off between computational cost
and topological fidelity, providing a speedup of 11x over
the next highest resolution. For topological guidance, the
wall clock time was approximately 420 seconds per sam-
ple for the highest decoding resolution with a convolutional
decoder.

Table 13. Topological sampling speed comparison for partial
decoding strategies. Speed is measured in terms of sampled label
maps per second using the maximum allowable batch size on a
single GPU, normalized to the slowest method.

Methodology

Approach Domain Res. Speed (1)

16 32.00
Anatomica-L.  Coarse 32 26.25
64 11.00
128 1.14

Anatomica-V  Global 128 1.00
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Figure 8. Geometric guidance and disentangled guidance ablation study.
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Figure 9. Topological guidance and softmax temperature ablation study.



Topo.
Prec.

BO

Topo.
Prec.

B1

Topo.
Prec.

B2

0.87
0.6
0.4
0.2

0.8
0.6
0.44

0.2

0.4+

0.2

Atrial Aortic Branch Spinal Vert. Coronary
., Separation ~ Connectivity Connectivity _ Calcium Count.
o/. .><'7. PR } o0
- 08 fo—or" 0.8 2 o8]
:l .< @
.7. : 063 \./0\. 0.6 o———e  0.67 o/ \.
/ 0.4 0.4 . ] 0.4 —
— 0.2 0217 N\—" 02
0= T T 0= T T 0= T T 0+ ¢ !
19 19 17 17 — .
@ e ® .
— 0.8 0.8 0.8 —_—
\.\.
0.6 __— 0.61 0.61
-/. B o—"* ' 4 o 4 o
. . 021 é . 0.21 0.2 —
e=t——— o — Z.\.>
O T T T 0 T T T 0 T 0 T T T
19 ° 0 19 19 19 E;zsjs
0.8 08 . . 0.8 0.8
/)< ./‘-‘§5<0
0.6 /L—" 0.6 . 0.6] 0.61
<< S—
T—e—————— 0.4 0.4 0.4
0.2 0.2 : 53:: 0.2
0 T T T 0 T T T 0 T T T
0 2 4 0 2 4 4 0 2 4
Guidance Weight Apo Guidance Weight Apo Gwdance Welght Atopo Guidance Weight Apo
Decoding Resolution
—16 ——32 ——64 — 128

Figure 10. Topological guidance and partial decoding resolution ablation study.
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